Hand (parallel hand)

Series variation

Pneumatic components

Safety precautions

Always read this section before starting use.
Refer to Intro 69 for general precautions of the cylinder, and to Intro 78 for general precautions of the cylinder switch.

Hand Series

Design \& Selection

1. COMMON

WARNING

- If the moving workpiece poses a possible risk to personnel or if fingers could be caught in the master key, etc., install a protective cover, etc.
- If circuit pressure drops due to a service interruption or problems in the air source, gripping power drops and the workpiece could drop. Provide position locking measures, etc., so that personnel are not injured or machines damaged.

a caution

- Cautions on gripping power

The grip is for one master jaw when all master and small jaws contact the workpiece as shown below.

Performance data indicates the gripping power at hand jaw length ℓ at a supply pressure of 0.15 to 0.7 MPa .

To obtain gripping power from performance data, if the distance to the workpiece's center of gravity is ℓ when manufacturing the small jaw, gripping power F is expressed as follows

When $\ell=\ell 1$, then $F=F 1$
When $\ell=\ell 2$, then $F=F$ 2
Refer to the drawing below.

The jaw's working max. length can be used within performance data.
When N is used to express the number of jaws as reference for the coefficient for transferring workpiece weight W_{L}

WL $\times 9.8:(\mathrm{F} \times \mathrm{N})=1: 5$ (only gripping)
WL \times 9.8: $(F \times N)=1: 10$ (normal transfer)
WL $\times 9.8:(F \times N)=1: 20$ (sudden acceleration transfer)
WL \times 9.8: Workpiece weight (kg)
F: Gripping power (N)
N : Number of jaws

Use as short and light a small jaw as possible.
If the small jaw is long and heavy, inertia increases when opening and closing. This may cause play in the master key, and may adversely affect life.
The small jaw's length must be within performance data.
The weight of the small jaw affects life, so check that it is within the following value.
$\mathrm{W}<1 / 4 \mathrm{H}(1 \mathrm{pc}) \quad$.W : Weight of small jaw H : Product weight of hand

Length of jaw (ℓ)

When gripping a long object or large workpiece, the center of gravity must be gripped to provide stable prehension. It is also necessary to stabilize prehension by increasing the size or using multiple jaws.

Select a model that has sufficient power to grip the workpiece weight.

Select a model that has sufficient opening/closing width for the workpiece size.

- If directly inserting the workpiece into the jig with the hand, consider clearance during design to avoid damaging the hand.

Note) The workpiece is slid along the top of the small jaw, so chuck life could drop markedly. Sufficient consideration should be made for the shape of the small jaw.

- If the small jaw is not rigid enough, resulting deflection could cause the master jaw to twist or adversely affect operation.

Adjust the chuck open/close speed with the speed control valve (optional).
Play may occur quickly when used at a high speed.

1. COMMON

A CAUTION

- If a lateral load or load with a large impact is applied to the master key, play or damage could occur in the master key. Adjust and check that external force is not applied to the master key.

The cylinder switch could malfunction if there is magnetic substance, such as a steel plate, near the cylinder switch. Keep magnetic substance at least 10 mm from the cylinder.

The cylinder switch could malfunction if cylinders are installed adjacently. Check that the following distances are provided between cylinders.

If the clamp is operated carefully and slowly as possible, accuracy increases. Repeatability also stabilizes.

Regularly grease the sliding section of the master key. Periodic replenishment of grease will extend the life of the part.

Installing the jaw
To prevent any effect onto the hand, support the master key with a wrench, etc., and tighten so that the master key is not twisted.

2. Installation

Do not cause dents or scratches that may worsen flatness or perpendicularity on the fixing face or master key.

If there is a limit to the thickness direction of the FH series body, the available piping joint will be limited. Refer to the following joints.

Refer to the section below for details on installing the FH series.

- Front installation

Note) When a switch is provided, screw the bolt into as shown below so the switch is not pressed by the end of the bolt.

Note) Check that the fixed plate does not overlap the master jaw support.

Model	Applicable bolt size	Max. screw depth (mm)	Recommended tightening torque $(\mathrm{N} \cdot \mathrm{cm})$
$\mathrm{FH}^{*} 10$	$\mathrm{M} 3 \times 0.5$	4.5	70
$\mathrm{FH}^{*} 12$	$\mathrm{M} 3 \times 0.5$	4.5	70
$\mathrm{FH}^{*} 16$	$\mathrm{M} 4 \times 0.7$	6	160
$\mathrm{FH}^{*} 20$	$\mathrm{M} 5 \times 0.8$	7.5	330
$\mathrm{FH}^{*} 25$	$\mathrm{M} 5 \times 0.8$	12	330

Precautions

- Use of throught hall

When installing the small jaw, check that a lateral load is not applied to the master key.

Tighten with the following tightening torque.

Screw nominal	M3	M4	M5	M6	M8
Recommended tightening torque $(\mathrm{N} \cdot \mathrm{m})$	0.59	1.4	2.8	4.8	12.0

How to order
How to order
<Example of model number>
BHE-03CS-D-T2H-R
(A) Size
: 03Cs
B Option : Open angle adjustment mechanism
(C) Switch model no. : Proximity T2H, lead wire 1 m
(D) Switch quantity : One on open side
How to order switch

Switch model no. (Item above (C)

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
$\begin{aligned} & \text { BHA } \\ & \text { BHG } \end{aligned}$
LHA
LHAG
HKP
$\begin{array}{\|l} \hline \text { HLA } \\ \text { HLB } \\ \hline \text { HLAG } \\ \text { HLBG } \end{array}$
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
CK
CKA
CKS
CKF
CKJ
CKL2
$\begin{aligned} & \text { CKL2 } \\ & -{ }_{-}^{*}-\mathrm{HC} \end{aligned}$
CKH2
CKLB2
$\begin{aligned} & \text { NCKI } \\ & \text { SCKFCl } \end{aligned}$
FJ
FK
Ending
묻

$B H E$ series

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
BHA
BHG
LHA
LHAG
HKP
HLA
HLB
HLAG/
HLBG
HEP
HCP
HMF
HMFB
HFP

HLC
HGP

Option internal structure drawing

Open angle adjustment mechanism
(Option: D)

Close angle adjustment mechanism
(Option: E)

(Option: DE)

Centering hand
Gripping power performance data
Gripping power that functions to open and closed directions with jaw length ℓ of hand at supply pressure $0.3,0.5$ and 0.7 MPa is shown.

- Open direction $(\langle\square)-$ - - - - (shown with broken line)
- Closed direction (\square) (shown with continuous line)
(Note) Grip performance data indicates the grip for one jaw. Since two jaws are used, double the grip in the graph when making a selection.

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
$\begin{aligned} & \hline \mathrm{BHA} \\ & \mathrm{BHG} \\ & \hline \end{aligned}$
LHA
LHAG
HKP
$\begin{aligned} & \hline \text { HLA } \\ & \text { HLB } \\ & \hline \text { HLAG } \\ & \text { HLBG } \end{aligned}$
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
CK
CKA
CKS
CKF
CKJ
CKL2
$\begin{aligned} & \hline \text { CKL2 } \\ & { }_{-}^{*}-H C \end{aligned}$
CKH2
CKLB
$\begin{aligned} & \hline \text { NCK } \\ & \text { SCKFC } \end{aligned}$
FJ
FK
Endin

Dimensions

- BHE-01CS (standard)
- BHE-01CS-D (with open angle adjustment mechanism)

- BHE-01CS-E (with close adjustment)
- BHE-01CS-DE (open and close adjustment)

Dimensions
Dimensions CAD

- BHE-03CS (standard)
- BHE-03CS-D (with open adjustment)

- BHE-03CS-E (with close adjustment)
- BHE-03CS-DE (open and close adjustment)

- With switch

RRC
GRC
RV3 *
NHS
HR
LN
FH100
HAP
BSA2
BHA BHG LHA LHAG HKP HLA/ HLB HLBG HEP HCP HMF HMFB HFP HLC HGP FH500 HBL HDL HMD HJL${ }^{\text {HAS }}$

BHE

- BHE-04CS (standard)
- BHE-04CS-D (with open adjustment)

- BHE-04CS-E (with close adjustment)
- BHE-04CS-DE (open and close adjustment)

Dimensions

Dimensions
 CAD

BHE-05CS (standard)
BHE-05CS-D (with open adjustment)

- BHE-05CS-E (with close adjustment)

BHE-05CS-DE (open and close adjustment)

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
$\begin{aligned} & \text { BHA } \\ & \text { BHG } \end{aligned}$
LHA
LHAG
HKP
$\begin{aligned} & \hline \text { HLA/ } \\ & \hline \text { HLB } \\ & \hline \text { HLAG/ } \\ & \hline \end{aligned}$
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
CK
CKA
CKS
CKF
CKJ
CKL2
$\begin{aligned} & \text { CKL2 } \\ & { }_{-}^{*}-\mathrm{HC} \end{aligned}$
CKH2
CKLB2
$\begin{aligned} & \text { NCK } \\ & \text { SCKFCK } \end{aligned}$
FJ
FK
Ending

- BHE-06CS (standard)
- BHE-06CS-D (with open adjustment)

- BHE-06CS-E (with close adjustment)
- BHE-06CS-DE (open and close adjustment)

- With switch

Als,

Small jaw
 Material: Iron, engineering plastic

Features

A variety of small jaws is available to match user machining needs.

- Socket and spigot section machined

 Standard section (socket and spigot section) machined.Wide series variation to select according
to workpiece shape and dimension.

- 2 types of materials for small jaw

 Iron (S50C) and engineering plastic (MC nylon) are available according to material and working conditions of workpiece.Applicable model for standard small jaw

Small jaw applications

How to order (Note: When ordering repair parts, 1 pc . is provided.)

A Model		B Material		C Small jaw no.			
Symbol	Descriptions	Symbol	Descriptions	Symbol	Applicable model	Symbol	Applicable model
FH	Feather hand (FH100/FH500)	Y1	Material S50C	110	HAP-1C	210	HEP-5CS
HAP	Parallel hand	Y2	Material MC nylon	120	HAP-2CS, HBL-2CS	310	FH110, FH510
BHA	Compact cross roller parallel hand			130	HAP-3CS, HBL-3CS	320	FH112, FH512
BHG	Compact cross soller paraller hand with rubber cover			140	HAP-4CS, HBL-4CS	330	FH116, FH516
HEP	Bearing parallel hand			150	HBL-1CS	340	FH120,FH520
HCP	Lateral parallel hand			160	HCP-2CS	350	FH125
HBL	Fulcrum hand			170	HCP-3CS	260	BHA-01CS1, BHG-01CS
				180	HCP-4CS	270	BHA-03CS1, BHG-03CS
		190	HEP-3.5CS	280	BHA-04CS1, BHG-04CS		
		200	HEP-4CS	290	BHA-05CS1, BHG-05CS		

Small jaw no.	Applicable model	*Material	Dimension (mm)														Weight (g)
			A	B	C	D	E	ϕ F	G	$\mathrm{H}_{0}{ }^{\text {002 }}$	1	J	K	L	M	$\phi \mathrm{N}$	
110	HAP-1C	Y1	40	17	24.5	4.5	3	6	10	8	5	1.5	5	3.5	8	3.5	39
		Y2		21							9						8
120	HAP-2CS	Y1	50	26	28	5.5	4	8	20	10	6	2	10	5	12	4.5	135
	HBL-2CS	Y2		30							10						25
130	HAP-3CS	Y1	60	33	30.5	6.5	5	9.5	20	12	8	2	10	5.5	18	5.5	194
	HBL-3CS	Y2															29
140	HAP-4CS	Y1	80	43	44	7.5	6	11	20	14	10	2	10	8	20	6.5	352
	HBL-4CS	Y2		50							17						53
150	HBL-1C	Y1	40	19	19	4.5	3	6	12	8	5	1.5	6	4	10	3.5	44
		Y2			21												7
160	HCP-2CS	Y1	60	29	33	9.5	5	9.5	22	18:0.0.	9	2	11	11	10	5.5	206
		Y2															31
170	HCP-3CS	Y1	70	35	34	11.5	6	11	25	20:0. ${ }^{1}$	10	2	12.5	8	20	6.5	303
		Y2															45
180	HCP-4CS	Y1	80	40	42	13	6	11	35	25:0.1	10	2	17.5	10	20	6.5	563
		Y2	78	44						25	14			8			97
190	HEP-3.5CS	Y1	80	41	50	7.5	5	9.5	20	14	10	2	10	6	18	5.5	360
		Y2		49							18						70
200	HEP-4CS	Y1	120	60	81	11.5	6	11	30	22	13	2	15	8	20	6.5	1245
		Y2		77					32		30		16				270
210	HEP-5CS	Y1	135	60	91	14.5	8	14	30	28	16	2	15	10	25	8.5	1443
		Y2		79					38		35		19				382
310	FH110	Y1	29.5	15	14	4.5	3	6	12	7	4	1.5	6	3.5	8	3.5	22
	FH510	Y2															4
320	FH112	Y1	29.5	16.5	14	4.5	3	6	12	7	4	1.5	6	3.5	8	3.5	23
	FH512	Y2															4
330	FH116	Y1	39	20	20.5	5.5	4	8	12	10	5	1.5	6	3.5	10	4.5	48
	FH516	Y2															8
340	FH120	Y1	39	22.5	20.5	5.5	4	8	12	10	5	15	6	35	10	4.5	53
340	FH520	Y2	39	25.5	20.5	5.5	4	8	12	10	8	1.5	6	3.5	10	4.5	10
350	FH125	Y1	48.5	22.5	28.5	6.5	5	9.5	14	12	8	2	7	4.5	10	5.5	105
350	FH125	Y2		25.5							14				10	5.5	17
260	BHA-01CS1	Y1	30	17.5	14.5	4.5	3	6	14	10	5	1.5	7	4	8	3.5	38
	BHG-01CS	Y2															6
270	BHA-03CS1	Y1	40	21	21	5.5	4	8	14	10	6	15	7	45	10	45	61
	BHG-03CS	Y2		23							8	1.5					11
280	BHA-04CS1	Y1	40	26.5	21	5.5	4	8	14	10	6	1.5	7	4.5	10	4.5	76
	BHG-04CS	Y2		29.5							9						12
290	BHA-05CS1	Y1	50	33	285	65	5	95	14	10	8	2	7	6	10	55	123
290	BHG-05CS	Y2	50	39	28.5	6.5	5	9.5	14	10	14	2	7	6	10	5.5	23

