Hand (parallel hand)

Series variation

Pneumatic components

Safety precautions

Always read this section before starting use.
Refer to Intro 69 for general precautions of the cylinder, and to Intro 78 for general precautions of the cylinder switch.

Hand Series

Design \& Selection

1. COMMON

WARNING

- If the moving workpiece poses a possible risk to personnel or if fingers could be caught in the master key, etc., install a protective cover, etc.
- If circuit pressure drops due to a service interruption or problems in the air source, gripping power drops and the workpiece could drop. Provide position locking measures, etc., so that personnel are not injured or machines damaged.

a caution

- Cautions on gripping power

The grip is for one master jaw when all master and small jaws contact the workpiece as shown below.

Performance data indicates the gripping power at hand jaw length ℓ at a supply pressure of 0.15 to 0.7 MPa .

To obtain gripping power from performance data, if the distance to the workpiece's center of gravity is ℓ when manufacturing the small jaw, gripping power F is expressed as follows

When $\ell=\ell 1$, then $F=F 1$
When $\ell=\ell 2$, then $F=F$ 2
Refer to the drawing below.

The jaw's working max. length can be used within performance data.
When N is used to express the number of jaws as reference for the coefficient for transferring workpiece weight W_{L}

WL $\times 9.8:(\mathrm{F} \times \mathrm{N})=1: 5$ (only gripping)
WL \times 9.8: $(F \times N)=1: 10$ (normal transfer)
WL $\times 9.8:(F \times N)=1: 20$ (sudden acceleration transfer)
WL \times 9.8: Workpiece weight (kg)
F: Gripping power (N)
N : Number of jaws

Use as short and light a small jaw as possible.
If the small jaw is long and heavy, inertia increases when opening and closing. This may cause play in the master key, and may adversely affect life.
The small jaw's length must be within performance data.
The weight of the small jaw affects life, so check that it is within the following value.
$\mathrm{W}<1 / 4 \mathrm{H}(1 \mathrm{pc}) \quad$.W : Weight of small jaw H : Product weight of hand

Length of jaw (ℓ)

When gripping a long object or large workpiece, the center of gravity must be gripped to provide stable prehension. It is also necessary to stabilize prehension by increasing the size or using multiple jaws.

Select a model that has sufficient power to grip the workpiece weight.

Select a model that has sufficient opening/closing width for the workpiece size.

- If directly inserting the workpiece into the jig with the hand, consider clearance during design to avoid damaging the hand.

Note) The workpiece is slid along the top of the small jaw, so chuck life could drop markedly. Sufficient consideration should be made for the shape of the small jaw.

- If the small jaw is not rigid enough, resulting deflection could cause the master jaw to twist or adversely affect operation.

Adjust the chuck open/close speed with the speed control valve (optional).
Play may occur quickly when used at a high speed.

1. COMMON

A CAUTION

- If a lateral load or load with a large impact is applied to the master key, play or damage could occur in the master key. Adjust and check that external force is not applied to the master key.

The cylinder switch could malfunction if there is magnetic substance, such as a steel plate, near the cylinder switch. Keep magnetic substance at least 10 mm from the cylinder.

The cylinder switch could malfunction if cylinders are installed adjacently. Check that the following distances are provided between cylinders.

If the clamp is operated carefully and slowly as possible, accuracy increases. Repeatability also stabilizes.

Regularly grease the sliding section of the master key. Periodic replenishment of grease will extend the life of the part.

Installing the jaw
To prevent any effect onto the hand, support the master key with a wrench, etc., and tighten so that the master key is not twisted.

2. Installation

Do not cause dents or scratches that may worsen flatness or perpendicularity on the fixing face or master key.

If there is a limit to the thickness direction of the FH series body, the available piping joint will be limited. Refer to the following joints.

Refer to the section below for details on installing the FH series.

- Front installation

Note) When a switch is provided, screw the bolt into as shown below so the switch is not pressed by the end of the bolt.

Note) Check that the fixed plate does not overlap the master jaw support.

Model	Applicable bolt size	Max. screw depth (mm)	Recommended tightening torque $(\mathrm{N} \cdot \mathrm{cm})$
$\mathrm{FH}^{*} 10$	$\mathrm{M} 3 \times 0.5$	4.5	70
$\mathrm{FH}^{*} 12$	$\mathrm{M} 3 \times 0.5$	4.5	70
$\mathrm{FH}^{*} 16$	$\mathrm{M} 4 \times 0.7$	6	160
$\mathrm{FH}^{*} 20$	$\mathrm{M} 5 \times 0.8$	7.5	330
$\mathrm{FH}^{*} 25$	$\mathrm{M} 5 \times 0.8$	12	330

Precautions

- Use of throught hall

When installing the small jaw, check that a lateral load is not applied to the master key.

Tighten with the following tightening torque.

Screw nominal	M3	M4	M5	M6	M8
Recommended tightening torque $(\mathrm{N} \cdot \mathrm{m})$	0.59	1.4	2.8	4.8	12.0

* Integrated speed control valve is available only for double acting type.

Switch specifications

Descriptions	Proximity 2 wire	Proximity 3 wire
	T2H $/ \mathrm{V}$	T3H $/ \mathrm{V}$
Applications	Programmable controller	Programmable controller, relay
Output method	-	NPN output
Power voltage	-	10 to 28 VDC
Load voltage/current	10 to 30 VDC, 5 to $20 \mathrm{~mA}($ Note 1$)$	30 VDC or less, 100 mA or less
Light	1 LmA or less	LED (ON lighting)
Leakage current		$10 \mu \mathrm{~A}$ or less

Note 1: Max. load current above: 20 mA at $25^{\circ} \mathrm{C}$. The current will be lower than 20 mA if ambient temperature around switch is higher than $25^{\circ} \mathrm{C}$. (5 to 10 mA with $60^{\circ} \mathrm{C}$)

How to order

FH500 series

Internal structure and parts list

- Standard (double acting)/O (normally open) type Speed control valve

Spring of (44 is not contained in standard (double acting) type.

No.	Parts name	Material	Remarks	No.	Parts name	Remarks	
1	Cylinder guard	Acetar resin		9	Piston packing seal	Nitrile rubber	
2	Body	Aluminum alloy	Labrication				
3	aiston	Stainless steel		10	Rod packing seal	Nitrile rubber	
4	Master key	Alloy steel	11	Hexagon socket head set screw	Stainless steel		
5	Snap ring	Stainless steel					
6	Fulcrum axis	Alloy steel	Heat treatment	14	Spring	Nickeling	
7	Operation axis	Alloy steel	Heat treatment	12	Steel ball	Urethane rubber	
8	Cylinder gasket	Nitrile rubber		16	Speed control valve assembly		Stainless steel

Gripping power performance data

Gripping power that functions to open and closed directions with jaw length ℓ of hand at supply pressure 0.15 to 0.7 MPa is shown.

- Open direction (\langle)---- (shown with broken line) - Closed direction (- - (shown with continuous line)

(Note) Closed side gripping power of single acting type decreases 25 to 30% comparing to double acting type.
Grip performance data indicates the grip for one jaw. Since two jaws are used, double the grip in the graph when making a selection.

FH500 series
Feather hand (min-fulcrum hand)

Speed control valve (FH510-Z)

FH512-D/FH512-O

FH500 series

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
$\begin{aligned} & \text { BHA } \\ & \text { BHG } \end{aligned}$
LHA
LHAG
HKP
$\begin{aligned} & \text { HLA/ } \\ & \text { HLB } \\ & \hline \text { HLAG/ } \\ & \text { HLBG } \end{aligned}$
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
CK
CKA
CKS
CKF
CKJ
CKL2
$\begin{aligned} & \text { CKL2 } \\ & -{ }_{-}-\mathrm{HC} \end{aligned}$
CKH2
CKLB2
$\begin{aligned} & \text { NCK } \\ & \text { SCKFFK } \end{aligned}$
FJ
FK
Ending

Dimensions
CAD

- FH516-D/FH516-O
- Flow control valve (FH516-Z)

FH520-D/FH520-O

- Flow control valve (FH520-Z)

M5 (open port)

- With end mount

Note 1: Max. load current above: 20 mA at $25^{\circ} \mathrm{C}$.
The current will be lower than 20 mA if ambient temperature around switch is higher than $25^{\circ} \mathrm{C}$. (5 to 10 mA with $60^{\circ} \mathrm{C}$)

How to order

Without switch

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
$\begin{aligned} & \hline \mathrm{BHA} \\ & \mathrm{BHG} \\ & \hline \end{aligned}$
LHA
LHAG
HKP
$\begin{array}{\|l} \hline \text { HLA } \\ \text { HLB } \\ \hline \text { HLAG } \\ \text { HLBG } \end{array}$
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
CK
CKA
CKS
CKF
CKJ
CKL2
$\begin{aligned} & \hline \text { CKL2 } \\ & -{ }^{*}-\mathrm{HC} \\ & \hline \end{aligned}$
CKH2
CKLB2
$\begin{aligned} & \text { NCK/ } \\ & \text { SCKFC } \end{aligned}$
FJ
FK
Ending

- Switch body + mounting bracket

- Mounting bracket

- Switch body

Mounting bracket
HBL - T

- Switch body

Internal structure and parts list

- Standard (double acting)/O (normally open) type C (normally closed) type

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Body	Aluminum alloy		9	Piston B	Stainless steel (1CS) Acetar resin (2 to 4CS)	
2	Master key	Steel		10	Spring	Stainless steel	Only O type
3	Operation axis	Steel		11	Cylinder	Aluminum alloy	
4	Fulcrum axis	Steel		12	Cylinder gasket	Nitrile rubber	
5	Rod packing seal	Nitrile rubber		13	Cylinder guard	Aluminum alloy (1CS)	
6	Piston A	Stainless steel		14	Piston	Stainless steel	
7	Piston packing seal	Nitrile rubber		15	Spring	Stainless steel	
8	Magnet			16	Cylinder	Aluminum alloy	

* Spring of (10) is not contained in standard (double acting) type.

Gripping power performance data
Gripping power that functions to open and closed directions with jaw length ℓ of hand at supply pressure $0.3,0.5$ and 0.7 MPa is shown.

- Open direction (弓)----- (shown with broken line)
- Closed direction (\quad - (shown with continuous line)

(Note) O type gripping power decreases approximate 20 to 30% comparing to double acting type to closed direction. C type gripping power decreases approximate 10 to 20% comparing to double acting type to open direction.
Grip performance data indicates the grip for one jaw. Since two jaws are used, double the grip in the graph when making a selection.

- HBL-3CS

- HBL-4CS

Fulcrum hand

- HBL-1C standard/O/C

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
$\begin{aligned} & \mathrm{BHA} \\ & \mathrm{BHG} \\ & \hline \end{aligned}$
LHA
LHAG
HKP
$\begin{aligned} & \hline \text { HLAI } \\ & \text { HLB } \\ & \hline \text { HLAG/ } \\ & \hline \text { HLBG } \end{aligned}$
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
CK
CKA
CKS
CKF
CKJ
CKL2
$\begin{aligned} & \text { CKL2 } \\ & -{ }_{-}-\mathrm{HC} \\ & \hline \end{aligned}$
CKH2
CKLB2
NCK SCKIFCK
FJ
FK
Ending

Dimensions

CAD

- HBL-3CS standard/O/C
- Dimension in () for C (normally closed) specifications.

With switch

- With switch

The current will be lower than 20 mA if ambient temperature around switch is higher than $25^{\circ} \mathrm{C}$. $\left(5\right.$ to 10 mA with $\left.60^{\circ} \mathrm{C}\right)$

How to order						
Without switch$\text { HDL }-3 C S-0$						
With switch$\mathrm{HDL}-3 \mathrm{CS}-\mathrm{O}-\mathrm{T} 2 \mathrm{H}-\mathrm{R}$						
(A) Size		Symbol	Descriptions			
		A Size				
		3 CS				
		4CS				
		B Option				
(B) Option		Blank Standard (double acting)				
		0	Single acting (normally open)			
		c	Single acting (normally closed)			
		O Switch model no.				
	C Switch model no. * indicates lead wire length.	$\begin{gathered} \text { Axial } \\ \text { lead wire } \end{gathered}$	Radial lead wire	Contact	Indicator	Lead wire
		T2H*	T2V*		1 color	2-wire
		T3H**	T3V**	Proxiny $_{\text {In }}$	ndicator type	3-wire
		*Lead wire length				
		Blank 1m (standard)				
		3	3 m (option)			
		5 5m (option)				
		O Switch quantity				
	(1) Switch quantity	R	One on open side			
			One on closed side			
		D T				

(Select either R (open) or H (closed) for sections marked with an asterisk (*).)

Internal structure and parts list

* Spring of (1) is not contained in standard (double acting) type.

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Rod packing seal	Nitrile rubber		9	Piston A		
2	Cylinder gasket	Nitrile rubber		10	Piston B	Stainless steel	
3	Piston packing seal	Nitrile rubber		11	Spring	Acetar resin	
4	Magnet			12	Cylinder guard	Stainless steel	
5	Cylinder	Aluminum alloy		13	Piston	Acetar resin	
6	Pinion gear	Steel		14	Spring	Stainless steel	
7	Master key	Steel		15	Cylinder	Stainless steel	
8	Body	Aluminum alloy			Aluminum alloy		

Gripping power performance data

Gripping power that functions to open and closed directions with jaw length ℓ of hand at supply pressure $0.3,0.5$ and 0.7 MPa is shown.

- Open direction (כ) - - - - (shown with broken line) - Closed direction ($\boldsymbol{\square}$) ———(shown with continuous line)

(Note) O type gripping power decreases approximate 20 to 30% comparing to double acting type to closed direction.
C type gripping power decreases approximate 10 to 20% comparing to double acting type to open direction.
Grip performance data indicates the grip for one jaw. Since two jaws
are used, double the grip in the graph when making a selection.

Wide angle hand

With switch

- Dimension in () for C (normally closed) specifications.

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
$\begin{aligned} & \mathrm{BHA} \\ & \mathrm{BHG} \end{aligned}$
LHA
LHAG
HKP
$\begin{aligned} & \text { HLA/ } \\ & \text { HLB } \\ & \hline \text { HLAG/ } \\ & \text { HLBG } \\ & \hline \end{aligned}$
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
CK
CKA
CKS
CKF
CKJ
CKL2
$\begin{aligned} & \text { CKL2 } \\ & -{ }^{*}-\mathrm{HC} \end{aligned}$
CKH2
CKLB2
$\begin{aligned} & \text { NCK/ } \\ & \text { SCKFCK } \end{aligned}$
FJ
FK
Ending

Open state

The current will be lower than 20 mA if ambient temperature around switch is higher than $25^{\circ} \mathrm{C}$. (5 to 10 mA with $60^{\circ} \mathrm{C}$)

How to order / Internal structure
How to order

Without switch $\text { HMD } 16 \mathrm{CS}$						
$\begin{aligned} & \text { With switch } \\ & \text { HMD } \\ & \text { 16CS }- \text { T2H }-R ~ \end{aligned}$						
Model no. A Size		Symbol	Descriptions			
		A Size				
		16CS				
		25CS				
	B Switch model no.	B Switch model no.				
		Axial lead wire	Radial lead wire	Contact	Indicator	Lead wire
	* indicates lead wire length.	T2H*	T2V*	Proximity	$\begin{array}{\|c\|} \hline 1 \text { color } \\ \text { indicator type } \\ \hline \end{array}$	2-wire
		T3H*	T3V*			3-wire
		*Lead wire length				
		Blank	1 m (standard)			
		3	3m (option)			
		5	5 m (option)			
	(C) Switch quantity	© Switch quantity				
		R	One on open side			
		H	One on closed side			
		D	Two			

<Example of model number>
HMD-16CS-T2H-R
Model: Thin wide angle hand
(A) Size: 16CS

B Switch model no.: Proximity T2H switch, lead wire 1 m
C Switch quantity: One on open side
How to order switch

Internal structure and parts list

Gripping power performance data

Gripping power that functions to open and closed directions with jaw length ℓ of hand at supply pressure $0.3,0.5$ and 0.7 MPa is shown.
. Closed direction (\rightarrow) (shown with continuous line)
(Parallel)

(10 $\left.{ }^{\circ}\right)$

$\left(20^{\circ}\right)$

(Note) Grip performance data indicates the grip for one jaw.
Since two jaws are used, double the grip in the graph when making a selection.

- HMD-16CS

- HMD-16CS

- HMD-25CS

- HMD-25CS

- HMD-25CS

Toggle hand
HJL Series

Note 1: Max. load current above: 20 mA at $25^{\circ} \mathrm{C}$.
The current will be lower than 20 mA if ambient temperature around switch is higher than $25^{\circ} \mathrm{C}$. (5 to 10 mA with $60^{\circ} \mathrm{C}$)

How to order

Internal structure and parts list

Cylinder section of 50 CS and 60 CS

Parts list

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Body B	Aluminum alloy		14	E type snap ring	Carbon steel	
2	Body A	Aluminum alloy		15	Master key	Carbon steel	
3	DU dry bearing	Sintering oil impregnated alloy		16	Fulcrum axis	Carbon steel	
4	Operation axis	Carbon steel		17	Operation plate	Carbon steel	
5	Rod cover	Aluminum alloy		18	Link	Carbon steel	
6	Rod sealant	Nitrile rubber		19	Die slide bush	Copper alloy casting	
7	Cushion	Urethane rubber		20	Cylinder sealant	Nitrile rubber	
8	Piston seal	Nitrile rubber		21	Piston rod	Stainless steel	
9	Magnet		22	Piston A	Aluminum alloy		
10	Cylinder	Aluminum alloy		23	O ring	Nitrile rubber	
11	C type snap ring	Stainless steel	$50 C S, 60 C S$ are not available	24	Piston B	Aluminum alloy	
12	Guide rail	Carbon steel		25	Cylinder guard	Aluminum alloy	$50 C S, 60 C S$ are not available
13	Collar	Carbon steel					

Gripping power performance data
Gripping power performance data

Gripping power that functions to open and closed directions with jaw length ℓ of hand at supply pressure $0.3,0.5$ and 0.7 MPa is shown. Closed direction ($\boldsymbol{\square}$) ———— (shown with continuous line)

- HJL-63CS

Als,

Small jaw
 Material: Iron, engineering plastic

Features

A variety of small jaws is available to match user machining needs.

- Socket and spigot section machined

 Standard section (socket and spigot section) machined.Wide series variation to select according
to workpiece shape and dimension.

- 2 types of materials for small jaw

 Iron (S50C) and engineering plastic (MC nylon) are available according to material and working conditions of workpiece.Applicable model for standard small jaw

Small jaw applications

How to order (Note: When ordering repair parts, 1 pc . is provided.)

A Model		B Material		C Small jaw no.			
Symbol	Descriptions	Symbol	Descriptions	Symbol	Applicable model	Symbol	Applicable model
FH	Feather hand (FH100/FH500)	Y1	Material S50C	110	HAP-1C	210	HEP-5CS
HAP	Parallel hand	Y2	Material MC nylon	120	HAP-2CS, HBL-2CS	310	FH110, FH510
BHA	Compact cross roller parallel hand			130	HAP-3CS, HBL-3CS	320	FH112, FH512
BHG	Compact cross soller paraller hand with rubber cover			140	HAP-4CS, HBL-4CS	330	FH116, FH516
HEP	Bearing parallel hand			150	HBL-1CS	340	FH120,FH520
HCP	Lateral parallel hand			160	HCP-2CS	350	FH125
HBL	Fulcrum hand			170	HCP-3CS	260	BHA-01CS1, BHG-01CS
				180	HCP-4CS	270	BHA-03CS1, BHG-03CS
		190	HEP-3.5CS	280	BHA-04CS1, BHG-04CS		
		200	HEP-4CS	290	BHA-05CS1, BHG-05CS		

Small jaw no.	Applicable model	*Material	Dimension (mm)														Weight (g)
			A	B	C	D	E	ϕ F	G	$\mathrm{H}_{0}{ }^{\text {002 }}$	1	J	K	L	M	$\phi \mathrm{N}$	
110	HAP-1C	Y1	40	17	24.5	4.5	3	6	10	8	5	1.5	5	3.5	8	3.5	39
		Y2		21							9						8
120	HAP-2CS	Y1	50	26	28	5.5	4	8	20	10	6	2	10	5	12	4.5	135
	HBL-2CS	Y2		30							10						25
130	HAP-3CS	Y1	60	33	30.5	6.5	5	9.5	20	12	8	2	10	5.5	18	5.5	194
	HBL-3CS	Y2															29
140	HAP-4CS	Y1	80	43	44	7.5	6	11	20	14	10	2	10	8	20	6.5	352
	HBL-4CS	Y2		50							17						53
150	HBL-1C	Y1	40	19	19	4.5	3	6	12	8	5	1.5	6	4	10	3.5	44
		Y2			21												7
160	HCP-2CS	Y1	60	29	33	9.5	5	9.5	22	$18.0{ }^{0.0}$	9	2	11	11	10	5.5	206
		Y2															31
170	HCP-3CS	Y1	70	35	34	11.5	6	11	25	20:0. ${ }^{1}$	10	2	12.5	8	20	6.5	303
		Y2															45
180	HCP-4CS	Y1	80	40	42	13	6	11	35	25:0.1	10	2	17.5	10	20	6.5	563
		Y2	78	44						25	14			8			97
190	HEP-3.5CS	Y1	80	41	50	7.5	5	9.5	20	14	10	2	10	6	18	5.5	360
		Y2		49							18						70
200	HEP-4CS	Y1	120	60	81	11.5	6	11	30	22	13	2	15	8	20	6.5	1245
		Y2		77					32		30		16				270
210	HEP-5CS	Y1	135	60	91	14.5	8	14	30	28	16	2	15	10	25	8.5	1443
		Y2		79					38		35		19				382
310	FH110	Y1	29.5	15	14	4.5	3	6	12	7	4	1.5	6	3.5	8	3.5	22
	FH510	Y2															4
320	FH112	Y1	29.5	16.5	14	4.5	3	6	12	7	4	1.5	6	3.5	8	3.5	23
	FH512	Y2															4
330	FH116	Y1	39	20	20.5	5.5	4	8	12	10	5	1.5	6	3.5	10	4.5	48
	FH516	Y2															8
340	FH120	Y1	39	22.5	20.5	5.5	4	8	12	10	5	15	6	35	10	4.5	53
340	FH520	Y2	39	25.5	20.5	5.5	4	8	12	10	8	1.5	6	3.5	10	4.5	10
350	FH125	Y1	48.5	22.5	28.5	6.5	5	9.5	14	12	8	2	7	4.5	10	5.5	105
350	FH125	Y2		25.5							14				10	5.5	17
260	BHA-01CS1	Y1	30	17.5	14.5	4.5	3	6	14	10	5	1.5	7	4	8	3.5	38
	BHG-01CS	Y2															6
270	BHA-03CS1	Y1	40	21	21	5.5	4	8	14	10	6	15	7	45	10	45	61
	BHG-03CS	Y2		23							8	1.5					11
280	BHA-04CS1	Y1	40	26.5	21	5.5	4	8	14	10	6	1.5	7	4.5	10	4.5	76
	BHG-04CS	Y2		29.5							9						12
290	BHA-05CS1	Y1	50	33	285	65	5	95	14	10	8	2	7	6	10	55	123
290	BHG-05CS	Y2	50	39	28.5	6.5	5	9.5	14	10	14	2	7	6	10	5.5	23

