NCK/SCK/FCK Shock absorber

Related products

				●: Standard, [©] : Option, [○] : Custom or										r, : Not available			
											Mountir	ng style	С	ptior	า		CKL2
Method	Ν	<i>l</i> lodel no.	Max. colliding speed working range		0, 1						Basic type	Flange	With stop nut	Capped	on angle adaptor	Page	CKL2 -*-HC CKH2 CKLB2 NCK/ SCK/FCK FJ FK
			m/s												Deflection		Shock absorber Related products
											00	FA	N1	С			abs d pr
Fixed type		NCK	to 3.0	 				200			•	0	\bigcirc	\bigcirc		507	hock elate
		SCK	to 4.0	0.049					H 588			\odot	\bigcirc			519	SR
A divertable to ma	Low speed		to 1								•		\bigcirc	O	0		
Adjustable type	FCK	Medium speed type	to 2	2	•		0	O	0	527							
		High speed type	1.						120		•		0	O	0		

501

RRC GRC RV3*

NHS

HR LN FH100 HAP BSA2 BHA/ BHG LHA LHAG HKP HLA/ HLB HLAG HEP HCP HMF HMFB HFP HLC HGP FH500 HBL HDL

HMD HJL

BHE

CKG

СК

CKA CKS CKF

CKD

RRC

GRC RV3* NHS

HR LN

FH100

BSA2

BHA

BHG

LHA

LHAG

HKP

HLA/ HLB

HLAG/ HLBG

HEP

HCP

HMF

HMFB

HFP

HLC

HGP

FH500

HBI

HDI

HMD

HJL

BHE

CKG CK

CKA

CKS

CKF

CKJ

CKL2

CKL2 -*-HC

CKH2

CKLB2

NCK/ SCK/FCK FJ FK Ending Pneumatic components

Safety precautions

Always read this section before starting use.

Refer to Intro 69 for general details on the cylinders, and to Ending 78 for cylinder switches.

details.

Shock absorber NCK/SCK/FCK series

Design & Selection

1. COMMON

🛦 WARNING

Use within the product specification range. If maximum energy absorption in specifications is exceeded, damage or operation faults may occur. Performance in specifications may not be attained if not used at the full stroke length.

- Check that the product withstands the working environment before use.
 - Use in conditions exceeding the ambient temperature range will cause durability to drop.
 - Do not use in an environment (vacuum, high pressure) other than atmospheric pressure.

Check for scatter caused by cap damage.

- If used with exceeding specifications, the cap may be damaged and cause injuries by scatter.
- Provide a scatter-prevention cover, or move to a safe position while the main machine is operating.
- Do not use this product in cleanrooms.
 Otherwise, cleanrooms may be contaminated.

Check collision conditions.

- Before starting use, obtain collision speed, collision object weight, thrust applied to the shock absorber and the number of collisions per minute.
- (1) This is also necessary for calculating selection. If collision speed is less than the specification range, resistance is not generated and only a small amount of energy is absorbed, preventing the shock absorber from having any effect.
- (2) This product may not be used if the number of collisions per minute exceeds the maximum repetition cycle.

- Check that the surface of the collision object contacted by the piston rod is hard enough.
 - When the cap is not used, a high surface compression load is applied to the surface of the collision object contacted by the piston rod. The contact surface must be HRC35 and over.
- Check for the collision object's return force.
 - When using this product for conveyor drives, etc., it may be pressed back by internal spring force after energy is absorbed.
 Refer to the return spring force section in specifications for
- Do not use more than one shock absorber in parallel due to difficulty in balancing them. Use one shock absorber having a large absorption energy.
- Use an external stopper or the optional stopper nut at the final stop position of the collision object so impact is not applied to the main device. If impact is applied to the main device, durability may drop and return failures occur. Check that the product withstands the working environment before use.
- The maximum repetition cycle differs with ambient temperature.
- Values given in specification descriptions are for room temperature (20°C). Note that these values may change with the working temperature.

502

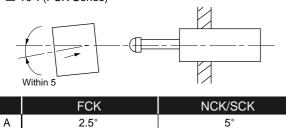
NCK/SCK/FCK Series

Installation & Adjustment

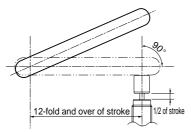
1. Common

A DANGER

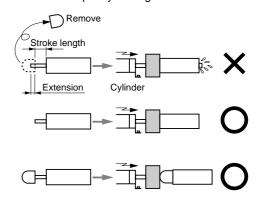
Do not use this product near fire or in devices or machines having an ambient temperature exceeding specifications.


Flammable oil in the product poses the risk of fire.

Do not place in fire.


Since oil is sealed, this product may explode or ignite if placed in fire.

A WARNING


- Do not apply an eccentric load exceeding ± A° from the piston rod centerline.
 - If load collides at a deflection angle exceeding ± A°, the piston rod may bend and cause a return failure or a drop in performance caused by offset wear of the sliding section. When using at a deflection angle exceeding ± A°, use the optional deflection angle adapter. This may be used up to ± 10°. (FCK Series)

When using rotary motion collision, set the distance from the center of the collision object's rotation to the shock absorber installation position at 12-fold and over of the shock absorber stroke (3-fold and over when using a deflection angle adapter). Install so contact is at a right angle at a position half of the stroke.

- Do not use with insufficient installation section strength.
 - The main machine may be damaged and injuries result if installation section strength is insufficient.
 - Secure the maximum load × safety factor for installation section strength. (Refer to the max. load, or consult with CKD.)
- Do not remove the cap from the shock absorber.
 - The piston rod is extended so the cap may be installed. Use without the cap may damage the base.

- A guide is required if the collision object vibrates. Install a secure guide on the collision object if the collision object vibrates or if force is applied to the piston rod at an axial right angle direction.
- Risk of static electricity buildup in explosion-proof environment.

Use a grounding device for discharge, and do not use cushioning materials that generate sparks.

- Do not place in fire.
 - Oil is sealed, so the product may explode or ignite if placed in fire.
 - Follow specified waste oil treatment to dispose of this product.
- Do not apply another external load by stroke end colliding object stops. Applying a separate external load to a collision object stopped at the stroke end may result in damage.
- Turn device power off and confirm the machine is stopped before installing, removing, or adjusting the stroke.

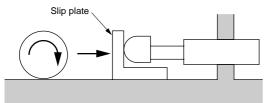
NCK/SCK/FCK Series

RRC

- Observe the following table for mounting nut tightening torque.
 - The shock absorber may be damaged if nut tightening torque exceeds the upper limit below.
 - If the nut is to be securely tightened, use adhesives, etc., to ensure nut tightness.

(NCK Series)

Thread (mm)	M8 × 0.75	M10×1	M12×1	M14×1.5	M20×1.5
Nut tightening torque (N • m)	1.2 to 2.0	3 to 4	5 to 6	7.5 to 10	22 to 30
Thread (mm)	M25×1.5	M27×1.5			
Nut tightening torque (N·m)	55 to 70	100 to 130			

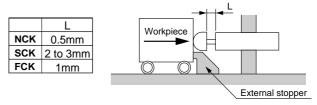

(SCK Series)

Thread (mm)	M10×1	M12×1	M16×1	M20×1	M25 ×1.5
Nut tightening torque (N·m)	3.4	5.4	14.2	70.8	421.7 to 588.4
Thread (mm)	M30×1.5	M40×1.5	M45×1.5		
Nut tightening torque (N·m)	149.1 to 196.1	274.6 to 353.0	421.7 to 588.4		

(FCK Series)

Thread (mm)	M10×1	M12×1	M14×1.5	M16×1.5	M20×1.5
Nut tightening torque (N·m)	5.9 to 7.8	5.9 to 7.8	8.3 to 9.8	11.8 to 14.7	29.4 to 35.3
Thread (mm)	M25×1.5 M25×2	M27×1.5 M27×3	M30×1.5	M36×1.5	M42×1.5
Nut tightening torque (N·m)	49.0 to 61.0	58.9 to 73.5	78.4 to 98.0	98.0 to 122.5	392.0 to 490.0

If the rotating objects or if deformation or wear is generated between the shock absorber and the collision object, place protective material before the collision surface to prevent deformation and wear.



Do not damage the piston rod sliding section or the damper case thread O.D. section.

Do not contact or sandwich objects between the piston rod sliding section or outer tube thread O. D. section, or fit setscrews, etc., into these causing damage or dents. Damage or dents on the position rod's sliding section may damage packing or cause oil leakage or operation faults. Damage or dents on the outer tube thread O. D. section may prevent proper installation on the platform, causing operation faults due to deformation of internal components.

Do not use in conditions where oil mist or water drops may contact the rod surface, or in areas with high levels of wear powder. Energy is not absorbed properly and faults may occur.

- Do not use without the external stopper.
 - Operation without the external stopper may damage the main body from bottom end.
 - Install the external stopper at the specified position.

- Do not use with outside specified tightening torque range.
 - Installation with outside specified tightening torque range may damage the main body.
 - Do not fix with screws that do not fit mounting holes. The product may drop off or be damaged.
- Check for snap ring looseness or loss.
 - If using outside specifications, the internal pressure of the inner tube in the shock absorber may rise abnormally causing the snap ring to come off. This may cause inner parts to pop out and cause injury.
 - Do not approach the shock absorber during operation.
- If the device is stored with the rod pressed in, the performance of the air chamber may drop. Do not store pressed in.
- Adjust the adjustable type, and use at the optimum position.
- Do not damage a piston or tube outer diameter thread.
 - Damaged sealing section may cause durability drop and return failure.

2. Adjustment method of FCK series

■ To adjust the shock absorber, first set the adjusting dial to "2", collide, then while observing the state, rotate in the direction of "1" or "3" to the optimum position.

After setting the scale to the optimum position, tighten the lock screw before starting use. If the lock screw is not tightened, the adjusted position may deviate and optimum absorption may not be attained.

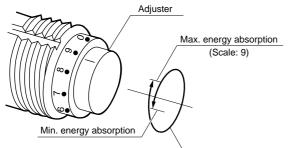
Note that the FCK-L-0.15, FCK- $^{H}_{M}$ -0.18, FCK-L-0.3 and FCK- $^{H}_{M}$ -0.5 are without lock screws.

- Protect the shock absorber with an external stopper or stopper nut during adjustment.
- *1 \rightarrow 2 \rightarrow 3 on the adjusting dial refers to the absorbed energy, weak \rightarrow medium \rightarrow strong.
- There may be a slight variation in products. Adjust individual products to the optimum position.

CKD

NCK/SCK/FCK Series

3. Adjustment method of SCK series



The SCK-**-0.3 and larger products are provided with an adjuster. Adjust as follows:

If collision force cannot be absorbed, turn the adjuster toward large values.

The adjuster is non-rotating and locks the position with a detent. Check that collision force is applied when the detent is activated.

- Note 1: Maximum energy absorption is attained when the adjuster is turned clockwise to 9, and minimum energy absorption is attained when the adjuster is turned counterclockwise by one rotation and slightly more. Minimum energy may vary per product. Turning the adjuster forcibly may lock or damage it.
- Note 2: Operation time may increase or operation may stop midway if the adjuster is not set appropriately.

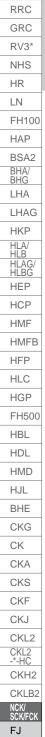
Turn one rotation and slightly more.

During Use & Maintenance

1. Common

WARNING

■ Do not disassemble.


Attempts to disassemble the product may pose the risk of danger.

- Improper disposal of oil is prohibited.
 - Improper disposal of oil sealed in the shock absorber causes environmental contamination.
 - Follow specified waste oil treatment to dispose of this product.
- Check for to abnormal vibration sounds and vibration.
 - If collision or vibration increases abnormally, product life may be expired. Replace the product. Continuing using is may damage equipment.

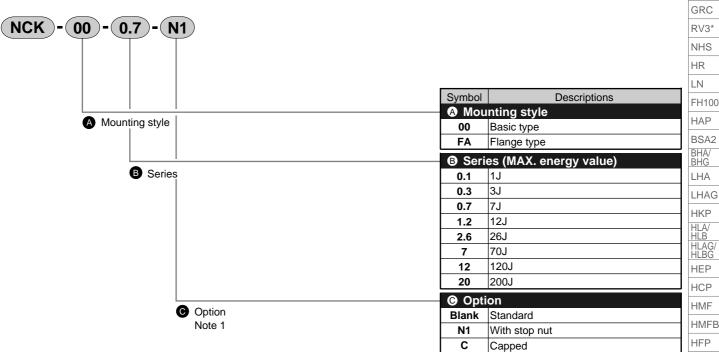
RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
BHA/
BHG LHA
LHAG
HKP
HLA/ HLB
HIAG/
ILDG
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
СК
СКА
CKS
CKF
CKJ
CKL2
CKL2
CKH2
CKLB2
NCK/
SCK/FCK
FJ
FK
Ending
er cts
orbe
absı I pro
ock a atec
Shc Reli

RRC

FK Ending

Shock absorber

Maximum energy absorption: 1 to 200J


Specifications

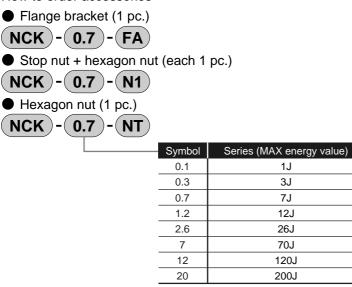
Descriptions					N	СК			
2 Series		0.1	0.3	0.7	1.2	2.6	7	12	20
Type/classification						adjuster eturn type			
Max. energy absor	otion J	1	3	7	12	26	70	120	200
G Stroke length	mm	4.5	6	8	10	15	20	25	30
Max. energy absorptic	on per hour kJ/hour	4.8	6.3	12.6	21.6	39.0	84.0	86.4	108.0
Max. colliding spee Max. repeating cyc	d m/s	1.0	1	.5	2	2.0	2.5	:	3.0
Max. repeating cyc	le Cycle/min.	80	35	3	0	25	20	12	9
Ambient temperatu	re °C				-10	to 80			
Max. load (resistan	ce) N	1450	3540	6150	8400	12100	24400	33500	47000
Return time	S			0.3 or less			0.4 o	r less	0.5 or less
 Product weight 	kg	0.009	0.012	0.02	0.04	0.07	0.2	0.3	0.45
B Recoiling force	Extended N	3	.0	2.0	2.9	5.9	9.8	1	6.3
Recolling loice	Compressed N	4.6		4.3	5.9	11.8	21.6 33.		33.9

NCK Series How to order

RRC

How to order

Note 1: 3 hexagon nuts are provided for N1 specifications products.


<Example of model number>

NCK-00-0.7-N1

Model: Shock absorber

- Mounting style: Basic type
- B Series: MAX energy-7J
- Option: With stop nut

How to order accessories

509

NCK Series

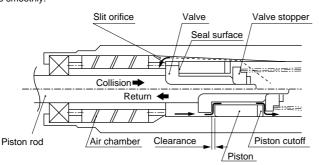
Operational explanation

(1) Collision

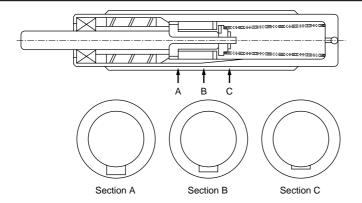
RRC GRC

RV3*

NHS

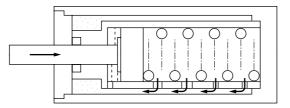

HR

LN

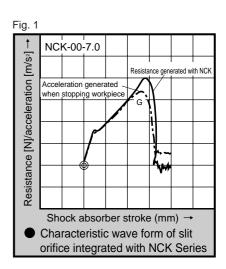

If the workpiece collides with the piston rod, oil in the tube pressed by the piston is pressurized, passes through grooves on CKD's original slit orifice, and flows toward the oil room with the air chamber. The piston is further pressed in by cylinder thrust or workpiece weight, etc., but the area of the slit orifice gradually decreases, so even higher resistance is generated. This series of operation is done continuously to stop the workpiece smoothly.

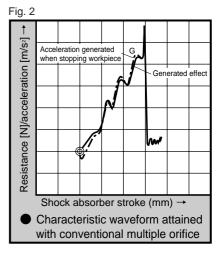
(2) Return

When released from the workpiece, the piston returned with the integrated spring, moving from the seal to the valve stopper, so the oil return flow path is opened by the cutoff section on the piston. Oil passes through this flow path and the slit orifice and returns to the state before the workpiece collided. The system waits for the next workpiece collision in this state.

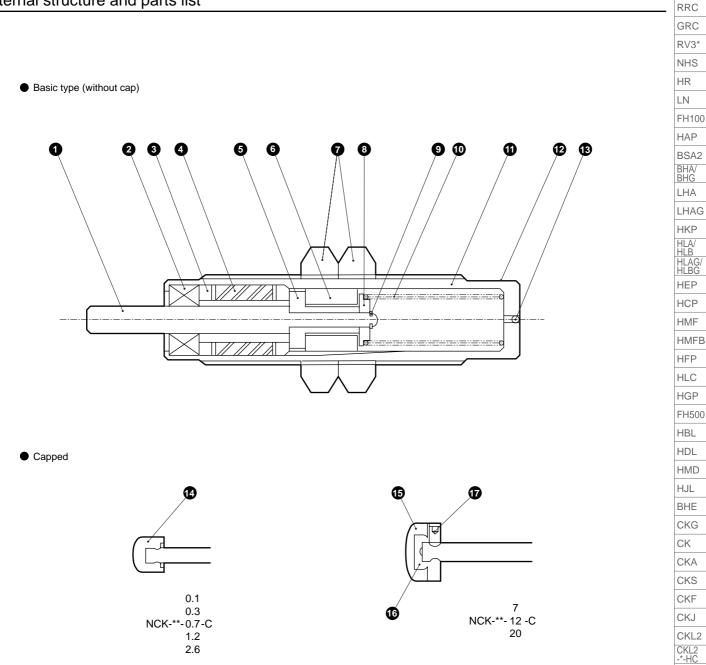


Structural explanation




1. The silt orifice smoothly changes (decreases) as the piston moves as shown above.

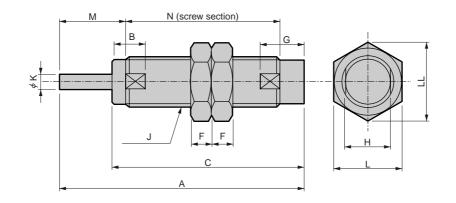
This structure enables an ideal "stop" when used with a hydraulic damper, but as manufacturing is difficult, it has not been integrated in other brands. CKD has implemented linear stopping performance as shown in Fig. 1.


2. Generally, the dual tube shown above is used for the orifice area changes with piston movement. Multiple small orifice holes in the inner pipe are closed as the piston moves, greatly affecting performance via hole positioning precision, and resistance changes with each orifice as shown in Fig. 2, preventing smooth operation.

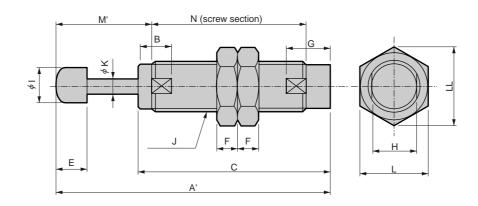
NCK Series Internal structure and parts list

Parts list

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks	NCK/ SCK/FC
1	Rod	Steel	Industrial chrome plated	10	Spring	Piano wire		FK
2	Oil seal	Special nitrile rubber		11	Damper case	Steel	Chrome plating	
3	Rod guide	Copper alloy		12	Label	Polyester film		Endin
4	Air chamber	Nitrile rubber		13	Ball	Alloy steel		er - Jots
5	Valve	Steel		14	Damper cushion	Polyamide resin	Black	absorber
6	Piston	Cast iron		15	Damper cushion	Polyester resin	Black	Solo
7	Hexagon nut	Steel	Galvanizing	16	Cushion stopper	Steel	Galvanizing	ed p
8	Valve stopper	Steel		17	Hexagon socket head set screw	Steel		Shock Relate
9	E type snap ring	Steel for spring	Galvanizing					. 2 Å

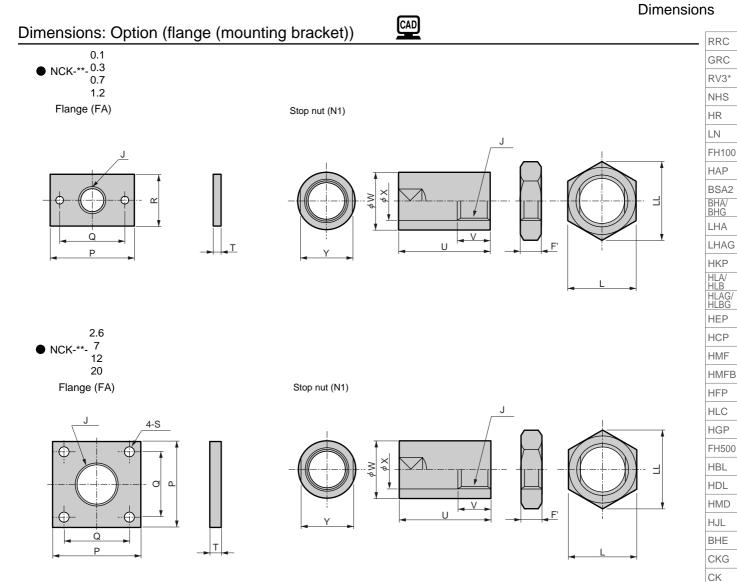

CKH2 CKLB2

NCK Series


Dimensions

Standard (NCK-**-**)

CAD



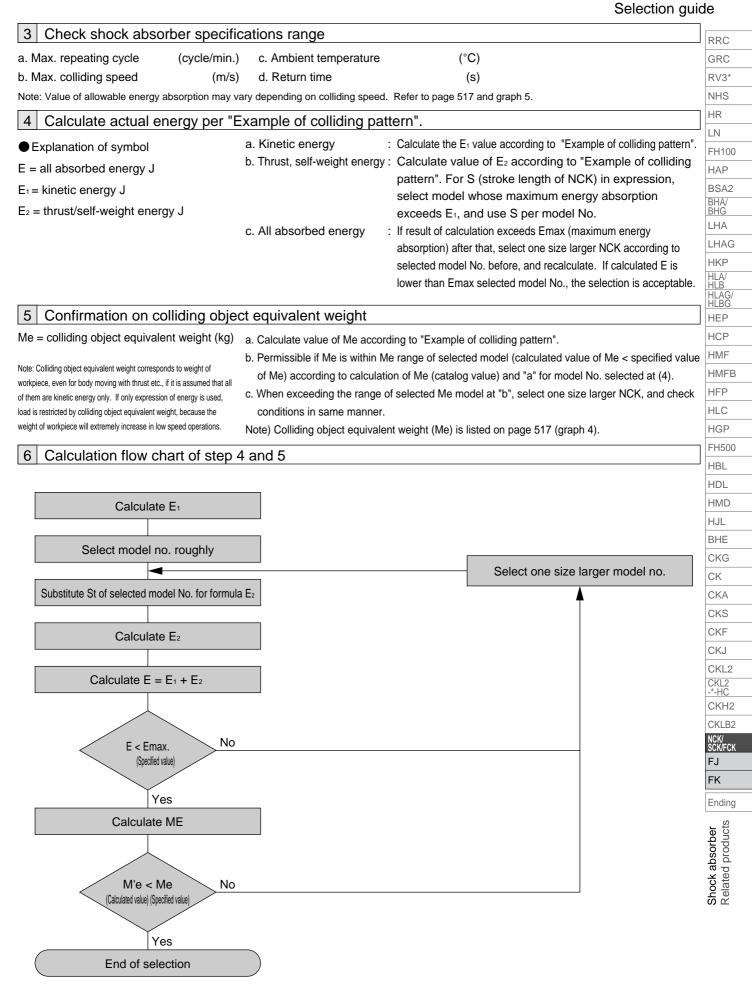
• Capped (NCK-**-**-C)

Symbol	Basi	c type ((00)													
Model no.	А	A'	В	С	E	F	G	Н	I	J	K	L	LL	М	Μ'	N
NCK-00-0.1	34.5	40.5	4	29.5	6	4	7.5	7	6	M8×0.75	2.8	12	13.9	6	12	23
NCK-00-0.3	45.5	51.5	7.5	39	6	4	8	7	6	M8×0.75	2.8	12	13.9	11	16.5	29.0
NCK-00-0.7	50	57	7.5	41.5	7	4	9	9	8	M10×1.0	3	14	16.2	13	20	31
NCK-00-1.2	57.5	65	8.5	47	7.5	5	11	11	10	M12×1.0	3.5	17	19.6	15	22.5	35.5
NCK-00-2.6	86	96	10.5	70.5	10	5.5	14	13	12	M14×1.5	5	19	21.9	20	30	58
NCK-00-7	98.5	109.5	12.5	78	11	8	18	19	16	M20×1.5	6	27	31.2	25	36	63.5
NCK-00-12	129	142	15.5	103.5	13	10	23	24	22	M25×1.5	8	32	37	30	43	87
NCK-00-20	141	154	15.5	110.5	13	10	25	24	22	M27×1.5	8	32	37	35	48	92

NCK Series

Symbol	Flange (F	۹)					Stop nut (N1)								
Model no.	J	Р	Q	R	S	Т	F'	J	U	V	W	Х	Y		
NCK-00-0.1	M8×0.75	42	30	20	5.5	2.3	4	M8×0.75	15	8	14	9	12		
NCK-00-0.3	M8×0.75	42	30	20	5.5	2.3	4	M8×0.75	15	8	14	9	12		
NCK-00-0.7	M10×1.0	42	30	20	5.5	2.3	4	M10×1.0	17	10	15	11	13		
NCK-00-1.2	M12×1.0	46	34	20	5.5	3.6	5	M12×1.0	23	10	19	13	17		
NCK-00-2.6	M14×1.5	52	38	-	6.5	6	5.5	M14×1.5	26.5	10	20	15	17		
NCK-00-7	M20×1.5	52	38	-	6.5	6	8	M20×1.5	36.5	15	26	21	24		
NCK-00-12	M25×1.5	52	38	-	6.5	6	10	M25×1.5	35	15	32	26	30		
NCK-00-20	M27×1.5	52	38	-	6.5	6	10	M27×1.5	45.5	15	35	28	32		

NCK/ SCK/FCK FJ FK Ending


CKA CKS CKF CKJ CKL2 CKL2 -*-HC CKH2 CKH2

Shock absorber Related products

Shock absorber selection guide (1)

RRC	1 Make co	ollision pattern c	of device clear											
GRC	5	a. Simple horizonta	al colliding		ੁg. Colli	ding caused by free	e slide							
RV3*	Horizontal motion	b. Colliding with the	rust of cylinder		ng. Colli g. Colli g. Colli g. Colli h. Colli	ding with thrust of c	cylinder (down)							
NHS	Horizo	c. Colliding with dri	-		i. Collic	ling with thrust of c								
HR		d. Colliding caused				ling caused by free								
LN		-	rust of cylinder (dov	(Nu) (Sasal (Sasal (Sasal (Sasal (Sasal) (Sasa			otor, etc. (oscillation)							
FH100	Vertica	f. Colliding with thr		Osollation (III)			notor, etc. (rotation)							
HAP		C C				ing with torque of h								
BSA2		cample of colliding patter												
BHA/ BHG	2 Make re	equired condition	ns / descriptions	s clear to calcula	ate energy									
LHA	E = all absorbe	ed energy (J)	M = colli	ding weight (kg)	H = droption	p height (m)								
LHAG	$E_1 = kinetic energy$	ergy (J)	V = collie	ding speed (m/s)	T = torque (N⋅m)									
HKP HLA/	$E_2 = thrust/self$	-weight energy (J)	S = NCK	K stroke length (m)	Td = mo	otor start torque (N·	m)							
HLA/ HLB HLAG/ HLBG			F = pres	sure (N)	K = reduction ratio									
HLBG HEP			-	leration of gravity 9.	9.8m/s ² θ , α , β = angle (deg)									
HCP	-	ject moving distanc		ular speed (rad/s)	^									
HMF	(Slope free			l = moment of inertia (kg/m ²)										
HMFB		enter of rotation to colliding po		neter (m)	-)									
HFP		nter of rotation to center of gra		ber of rotation (rpn										
HLC	G = position of	center of gravity	Me = collid	ling object equivalent we	ight (kg)									
HGP	Example of	f colliding patte	ern											
FH500			Horizontal colliding			Vertical colliding								
HBL		a. Simple horizontal colliding	b. Pressure of cylinder applies	c. Pressure of motor applies	d. Free drop	e. Cylinder lower limit stopper	f. Cylinder upper limit stopper							
HDL														
HMD				Td 🗤		للله الم								
HJL	Applications				м і	м	Ū.							
BHE		M C		M C			м [∨							
CKG					≜		L L							
CK														
CKA CKS	Kinetic energy	1 MV2	1 MV2	1 MV2	1 M V2	1 1 1/2	1 1 1/2							
CKF	E1 (J)	$\frac{1}{2}$ ·M·V ²	$\frac{1}{2}$ ·M·V ²	$\frac{1}{2}$ ·M·V ²	$\frac{1}{2}$ ·M·V ²	$\frac{1}{2}$ ·M·V ²	$\frac{1}{2}$ ·M·V ²							
CKJ	Thrust/self-weight energy E ₂ (J)		F∙S	2∙ <u>K</u> ∙Td∙S	M⋅g⋅S	(M·g + F)·S	(F - M⋅g)⋅S							
CKL2	All absorbed energy	E = E1	$E = E_1 + E_2$	$E = E_1 + E_2$	$E = E_1 + E_2$	$E = E_1 + E_2$	$E = E_1 + E_2$							
CKL2 -*-HC	E (J) Colliding object equivalent weight													
CKH2	Me (kg)	Me = M	$Me = \frac{2 \cdot E}{V^2}$	$Me = \frac{2 \cdot E}{V^2}$	$Me = \frac{2 \cdot E}{V^2} \left(V = \sqrt{2 \cdot g \cdot H} \right)$	$Me = \frac{2 \cdot E}{V^2}$	$Me = \frac{2 \cdot E}{V^2}$							
CKLB2			Slope colliding		Oscillation	n colliding	Rotation colliding							
NCK/ SCK/FCK		g. Free drop	h. Pressure of cylinder applies	i. Pressure of cylinder applies	j. Free drop	k. Torque of motor, etc. applies	L. Torque of motor, etc. applies							
FJ				X										
FK	Applications		La Va	Yer,	M	~ T								
Ending	Applications	/ M 7/ 1	M				ω							
				E M			мЛ							
			θ			M								
	Kinetic energy	$\frac{1}{2}$ ·M·V2	$\frac{1}{2}$ ·M·V2	$\frac{1}{2}$ ·M·V2	M·g·H	$\frac{J \cdot \omega^2}{2} \text{ or } \frac{1}{2} \cdot M \cdot V^2$	$\frac{J \cdot \omega^2}{2} = \frac{M \cdot D^2 \cdot \omega^2}{16}$							
	E1 (J) Thrust/self-weight energy	2	2	2	-	2 2								
	E ₂ (J)	M⋅g⋅S⋅sin <i>θ</i>	(M⋅g⋅sin <i>θ</i> +F)⋅S	(M⋅g⋅sin θ+F)⋅S	− r/R·M·g·S	$\frac{T}{R}$ ·S	$\frac{T}{R}$ ·S							
	All absorbed energy E (J)	$E=E_1+E_2$	$E=E_1+E_2$	$E=E_1+E_2$	$E=E_1+E_2$	$E=E_1+E_2$	$E=E_1+E_2$							
	Colliding object equivalent weight	$Me = \frac{2 \cdot E}{V^2} (V = \sqrt{2 \cdot g \cdot L \cdot \sin \theta})$	Me = $\frac{2 \cdot E}{V^2}$	Me = $\frac{2 \cdot E}{V^2}$	$Me = \frac{2 \cdot E}{V^2} \left(V = \frac{R}{r} \sqrt{\frac{3 \cdot g \cdot H}{2}} \right)$	(M⋅g⋅sin <i>θ</i> +F)⋅S	$Me = \frac{2 \cdot E}{V^2} (V = \omega \cdot R, \ \omega = \frac{2\pi \cdot N}{60})$							
	Me (kg)	V ² (V ² V ² 9 ² 9 ¹ 9 ¹ 9 ¹	$V^{2} = V^{2}$	0 – V ²	$V^2 = r \sqrt{2}$	(V ² V ² V ² 60							

NCK Series

Shock absorber selection guide (2)

400

200

100

60

40

20

10

6

4

2

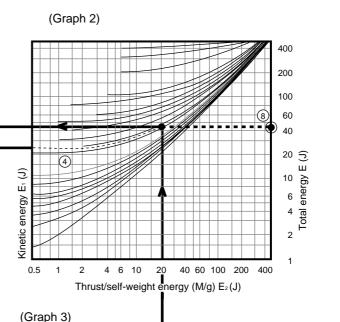
543

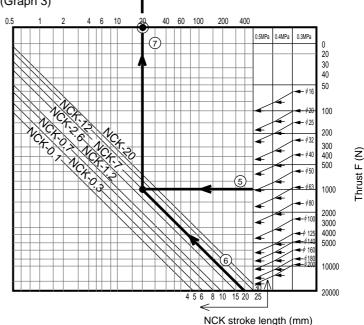
2

Shock absorber can be selected by calculation as (1) or reading graph. If not required to grasp energy values etc. during calculation, if this graph is used, proper model can be selected efficiently.

Condition of this figure: Horizontal colliding wit thrust

m = 50kg, V = 1.0m/s Cylinder bore size ϕ 50 Supply pressure = 0.5MPa


Thrust applies at horizontal collision (Graph 1) (gu page of the second se


Energy calculation graph

- c) Point of intersection between M and V (3) is kinetic energy E1 (J). : (3)
- d) Extend (3) to <Graph 2>, and refer to curve in figure to draw same curve. (dotted line): (4)
- e) Next, if thrust applies, decide thrust F (N) (from inner diameter and pressure of cylinder) by right end chart of <Graph 3>: (5)
- f) Determine model no. of NCK according to stroke length and max. energy absorption. : (6)
 (Select model no. whose max. energy absorption exceeds E₁ found at (3).)
- g) Point of intersection between F and NCK model no. (7) shows thrust/ self-weight energy E_2 (J). : (7)
- h) Extend point (B) to <Graph 2>, and point of intersection (8) with curve (4) shows total energy E (= E₁ + E₂) (J).
 - Here, if value E exceeds selected NCK Emax (max. energy absorption) at (f), select one size larger model no. of NCK again, the find E with same procedure.
- i) Here, if (C) and (8) are extended to <Graph 1>, point of intersection (9) with V (m/s) shows colliding object equivalent weight Me. : (9)

Check that colliding object equivalent weight is to be within specified value range <Graph 4>.

(When Me is exceeding specifications values, return to (f) , and repeats same procedures.)

516

CKD

Ending

Example of selection

NCK Series Selection guide

Select shock absorber according to example.

Select shock absorber which stops load M smoothly under left figure conditions.

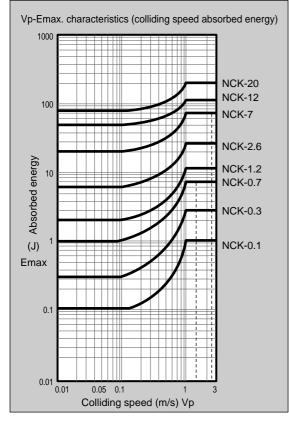
Frequency: 10 cycle/min. (Refer to equipment indoors.)

Colliding pattern of device equals to "b".

- 2 Summarize required conditions to calculate.
- a. Colliding object weight M = 50kg
- b. Colliding speed V = 1.0 m/s

c. Cylinder thrust

Check specifications. 3


a. Frequency 10 cycle/min.	: NG, since max. repeating cycle
	of NCK-20 is 9 cycle/min.
	(must be limited to model
	below NCK-12.)
b. Colliding speed 1.0m/s	: All models are available
b. Colliding speed 1.0m/s	(must be limited to model below NCK-12.)

 $F = \pi / 4 \times 50^2 \text{mm} \times 0.5 \text{MPa} = 981.7 \text{N}$

- c. Ambient temperature: Indoor equipment: All models are available
- d. Return time: Not specified All models are available

Rush speed characteristics graph of colliding object equivalent weight/absorbed energy

<Graph 5>

<Graph 4>

4

5

89.2kg

under these conditions.

Calculate actual energy.

since only E1 achieved 25J here.

a. Kinetic energy: $E_1 = \frac{1}{2} \cdot m \cdot V^2 = \frac{1}{2} \times 50 \text{ (kg)} \times 1.0^2 \text{ (m/s)} = 25$

b. Thrust: $E_2 = F \times S = 981.7$ (N) $\times 0.015$ (m) = 14.7 (J)

b'. $E_2 = F \times S = 981.7$ (N) $\times 0.02$ (m) = 19.6 (J)

From pattern figure example "b" as same as 4

c'. $E = E_1 + E_2 = 25$ (J) + 19.6 (J) = 44.6 (J)

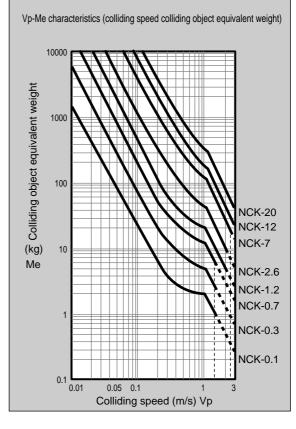
(J) Select NCK-2.6 (Ēmax = 26J) (St = 15mm) temporarily,

Recalculate with one size larger NCK-7, since this E = 39.7

(J) cannot be absorbed by temporarily selected NCK-2.6.

Go to confirmation of colliding object equivalent weight,

Check colliding object equivalent weight.


a. Colliding object equivalent weight Me = $\frac{2 \cdot E}{V^2} = \frac{2 \times 44.6 \text{ (J)}}{1.0^2 \text{ (m/s)}} =$

colliding object equivalent weight. Therefore, use NCK-7

b. NCK-7 Me is 150 (kg), so this is larger than calculated

since this E = 44.6 (J) can be absorbed by NCK-7.

From pattern figure example "b'

RRC GRC RV3* NHS HR LN c. All absorbed energy: $E = E_1 + E_2 = 25 (J) + 14.7(J) = 39.7(J)$ FH100 HAP BSA2 BHA/ BHG ΙΗΑ LHAG HKP HLA/ HLB HLAG HLBG HEP HCP HMF **HMFB** HFP HLC HGP FH500 HBL HDI HMD H.JI BHE CKG СК CKA CKS CKF CKJ CKL2 CKL2 -*-HC CKH2 CKI B2 NCK/ SCK/FC FJ FK Ending Shock absorber Related products

Shock absorber

Maximum energy absorption: 0.049 to 588J

Specifications FH100

RRC

GRC **RV3*** NHS

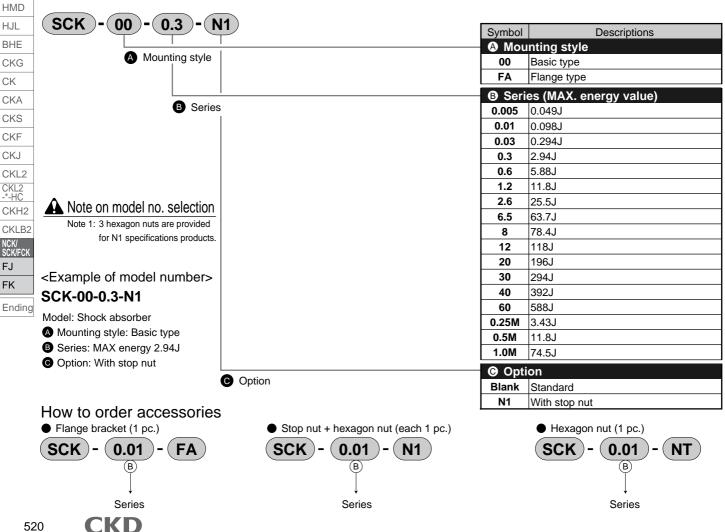
HR LN

HBI

HDL

HJL

CK


FJ

FK

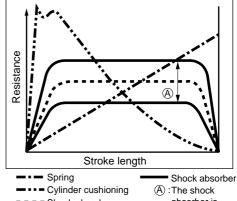
HAP	Descriptions	SCK																
BSA2	Series	0.005	0.01	0.03	0.3	0.6	1.2	2.6	6.5	8	12	20	30	40	60	0.25M	0.5M	1.0M
BHA/		With	out adj	istor					۱۸/i	th adjus	tor					Wit	th adjus	ster
BHG	Type/classification		g returr							g returr						Sprin	g returr	ı type
LHA		Opini	gictuii	гурс					Opini	gietun	гуре			_		(Screv	large)	
LHAG	Max. energy absorption J	0.049	0.098	0.294	2.94	5.88	11.8	25.5	63.7	78.4	118	196	294	392	588	3.43	11.8	74.5
HKP	Stroke length mm	7		1	0		1	5		25		40	60	7	0	10	15	30
HLA/ HLB	Max. energy	0.135	0.27	0.98	8.1	10.8	21.6	39	78	86	6.4	108	126	120	144	9.2	21.2	80.5
HLAG/ HLBG						4.5												
HEP	Max. colliding speed m/s		1.	.0		1.5		.0	2			3	.0		4.0	1.0	2.0	2.5
	Max. frequency Cycle/min.		4	5		3	0	25	20	18	12	9	7	5	4	45	30	18
HCP	Ambient temperature °C								-	10 to 8	0							
HMF	Max. load N	13	18	54	540	1000	1400	3100	4600	5700	8600	90	00	10000	15000	630	1440	4560
HMFB	Return time S	0	3 or les	SS		0.4 o	r less		0	5 or les	s		0.6 o	r less		0.4 o	r less	0.5 or less
HFP	Product weight kg	0.02	0.04	0.07	0	.2	0.	32	0.	63	1.17	1.25	1.39	1.45	2.05	0.05	0.13	0.39
HLC	Recoiling Extended N	1.2	2.0	5.9	5	.9	6	.9	12	2.0		20	0.0		29.0	3.9	5.5	7.6
HGP	force Compressed N	2.6	5.0	10.5	11	.3	17	7.2	30	0.0	39.0	51.0	68.0	75.0	84.0	8.4	11.5	21.0
FH500	Copper and PTFE free								5	Standar	d							
	N. A. MC. C.																	

Note: Minimum energy absorption to be 1/5 of maximum energy absorption.

How to order

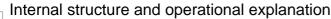
Shock absorber and other devices

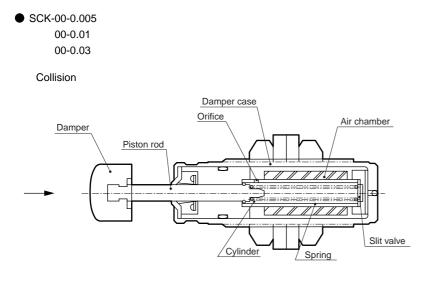
Shock absorber and other buffer devices

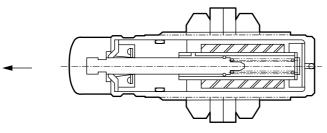

As shown at right:

• The spring accumulates energy and functions as spring return force at the stroke end.

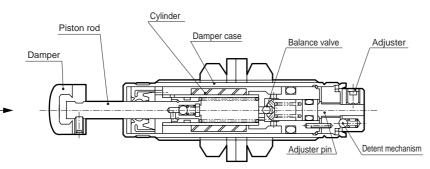
• Cylinder cushioning (a simple orifice provided to the hydraulic cylinder) has a sudden increase in resistance at collision and does not decelerate smoothly.


• A shock absorber without an adjuster has a constant absorbed energy so working conditions are limited (SCK-00-0.03 or less).

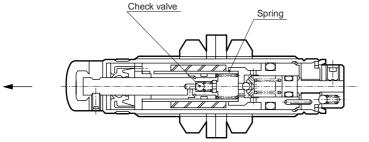

• A shock absorber with an adjuster has roughly constant resistance throughout the stroke, uniformly decelerating the object's speed. The curve moves in parallel vertically when adjusted, and collision energy is absorbed appropriately.


 Shock absorber without adjuster The shock absorber is adjusted with the adjuster. RRC

SCK Series



Return



SCK-00-0.3 to 60

Collision

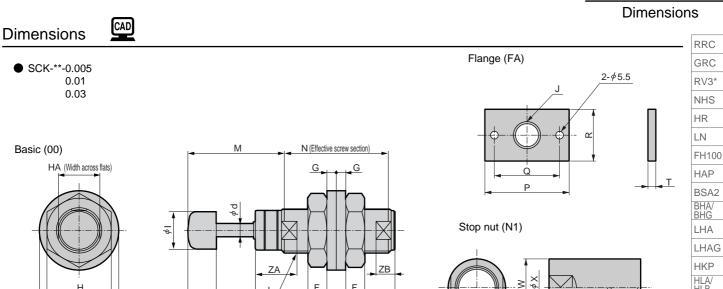
Return

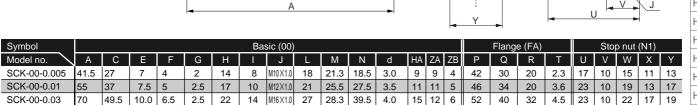
Collision

Collision force applied to the damper presses the piston rod and pressurizes oil in the cylinder. When generated hydraulics pass through the orifice and flow into the damper case, shock is absorbed. Oil flowing into the damper case pressurizes the air chamber and decreases air chamber volume. Note) With this product mechanism, internal pressure increases with workpiece speed during collision, generating resistance and absorbing energy. Resistance may thus appear low when pressed with a finger, but this poses no problem.

Return

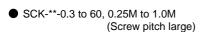
When the colliding workpiece is removed, the piston rod is pushed out by the internal spring. At the same time, the slit valve (check valve) is opened by pressure in the air chamber. Oil flows to the inner pipe and at completion, the slit valve closes.

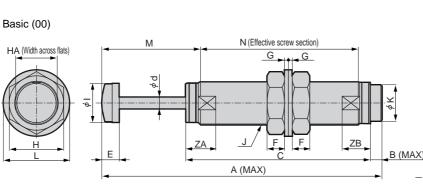

Collision

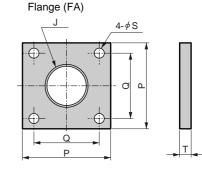

Collision force applied to the damper pushes the piston via the piston rod and pressurizes oil in the cylinder. When generated hydraulics pass through the orifice and balance valve and flow into the damper case, shock is absorbed. When the adjuster is turned clockwise, the adjust pin moves and the force of the balance valve spring increases. Oil flow is decreased and a larger collision force is withstood. Note) With this product mechanism, internal

pressure increases with workpiece speed during collision, generating resistance and absorbing energy. Resistance may thus appear low when pressed with a finger, but this poses no problem.

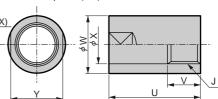
Return


When the colliding workpiece is removed, the piston rod is pushed out by the internal spring and the check valve is opened by pressure in the air chamber. Oil flows to the inner pipe and at completion, the check valve closes.



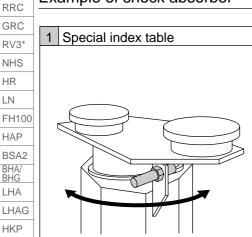

F

С

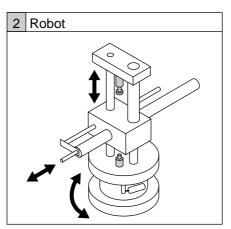


Е

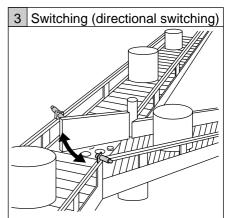
	_																	1									FJ
Symbol									Basic (00)										Flang	ge (FA)		Stop	o nut	(N1)		FK
Model no.	Α	В	С	E	F	G	н	I	J	K	L	M	Ν	d	HA	ZA	ZB	Р	Q	S	Т	U	V	W	Х	Y	FN
SCK-00-0.3	94.6	5.8	66.8	11	8	2.9	27	16	M20×1.0	13.5	33	33.5	45.7	5	17	17.5	16	52	38	6.5	6	32.5	15	26	21	24	Ending
SCK-00-0.6	94.6	5.8	66.8	11	8	2.9	27	16	M20×1.0	13.5	33	33.5	45.7	5	17	17.5	16	52	38	6.5	6	32.5	15	26	21	24	
SCK-00-1.2	122.5	7.5	86	13	10	2.9	32	22	M25×1.5	19.5	39	40.5	65.4	6	24	21	18	52	38	6.5	6	35	15	32	26	30	ots ar
SCK-00-2.6	122.5	7.5	86	13	10	2.9	32	22	M25×1.5	19.5	39	40.5	65.4	6	24	21	18	52	38	6.5	6	35	15	32	26	30	absorber d products
SCK-00-6.5	157.4	7.9	109.5	14	12	3.6	41	27	M30×1.5	23.5	50	51.5	89.4	8	27	21.5	19.5	66	48	8.5	6	40	15	40	31	36	SO
SCK-00-8	157.4	7.9	109.5	14	12	3.6	41	27	M30×1.5	23.5	50	51.5	89.4	8	27	21.5	19.5	66	48	8.5	6	40	15	40	31	36	ੂ ਯੋ
SCK-00-12	175.6	10.5	123.1	16	16	3.6	50	36	M40×1.5	33.5	61	55.5	98.5	11	38	27.5	26	84	64	10.5	9	69.5	20	50	41	46	Shock Relate
SCK-00-20	205.6	10.5	138.1	16	16	3.6	50	36	M40×1.5	33.5	61	70.5	13.5	11	38	27.5	26	84	64	10.5	9	69.5	20	50	41	46	ela ela
SCK-00-30	257.1	10.5	169.6	16	16	3.6	50	36	M40×1.5	33.5	61	90.5	145	11	38	27.5	26	84	64	10.5	9	69.5	20	50	41	46	SE
SCK-00-40	277.1	10.5	179.6	16	16	3.6	50	36	M40×1.5	33.5	61	100.5	155	11	38	27.5	26	84	64	10.5	9	69.5	20	50	41	46	
SCK-00-60	298.4	10.9	198.6	18	18	4.5	55	42	M45×1.5	37.5	67	102.9	72.5	12.5	43.5	31.5	30	84	64	10.5	9	70	20	60	46	55	
SCK-00-0.25M	96.6	6.5	69.1	10	5.5	2.5	19	12	M14×1.5	10	24	26.1	53.5	4	12.4	10	15.5	52	38	6.5	6	26.5	10	20	15	17	
SCK-00-0.5M	111.4	6.5	77.9	11	8	2.9	27	16	M20×1.5	13.5	33	33	60.8	5	17	12	17.5	52	38	6.5	6	36.5	15	26	21	24	
SCK-00-1.0M	161.6	7.7	109.9	13	10	2.9	32	22	M27×3.0	19.5	39	50.5	90.3	6	24	15	22	52	38	6.5	6	45.5	15	35	28	32	

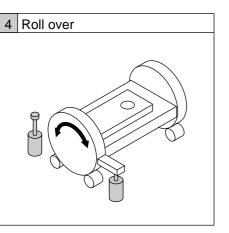

BSA2 BHA/ BHG LHA LHAG HKP HLA/ HLB HLAG HLBG HEP HCP HMF HMFB HFP HLC HGP FH500 HBL HDL HMD HJL BHE CKG СК CKA CKS CKF CKJ CKL2 CKL2 -*-HC

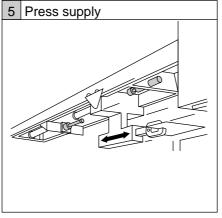
CKH2 CKLB2

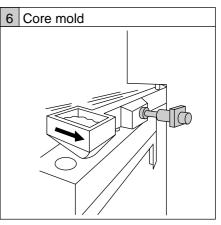

NCK/ SCK/FCK

SCK Series


Example of shock absorber


If used for special index table such as rim welding, etc. of wheel, index time can be reduced without damaging to machine.


This absorbs impact according to diverse parts movement, and prevents part damage. Furthermore, production speed can be improved.


If used for mechanism of inspection and sorting for physical distribution, this absorbs impact caused by bound of gate, and prevents pneumatic cylinder etc. from damage.

This can be used for automatic turn-over mechanism for parts after machining and welding etc. This reduces abrasion of driving section such as drive, gears and pinion, etc., and extends service life.

This can be used with parts feeding mechanism to die of press (die and stamping model). Deceleration effect according to parts can be obtained without decreasing supply speeds of pneumatics cylinders etc.

This can be used to stop swing arm in process that injects sand model material. This also increase cycle per unit time according to production number increase.

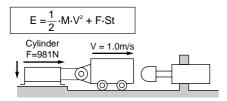
SCK Series Selection guide

Selection guide

Setting of working conditions

Make following conditions clear for shock absorber selection.

(1) Load weight (kg)


(2) Colliding speed of instantaneous hit to shock absorber (m/s)

(3) If external force applies to load, that thrust (kgf)

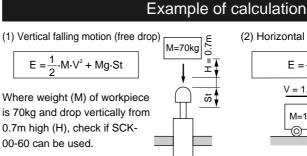
Symbol

- D = Cylinder diameter (mm)
- E = Kinetic energy (J)
- P = Operation pressure (MPa)
- K = Radius of gyration (m) (distance of load center to center of rotation)
- ω = Colliding angular speed (rad/s)
- I = Moment of inertia (kg/m2)
- F = Thrust (N)
- T = Torque (N·m)
- V = Colliding speed (m/s)
- H = Height (m)
- St = Shock absorber stroke length (m)
- M = Weight of workpiece (kg)
- g = Gravity acceleration 9.8m/s²

(3) Horizontal motion (for thrust)

If workpiece calculated at (2) is moved by pneumatic cylinder (D) 50mm dia. with (P) 0.5MPa, thrust of pneumatics cylinder is,

 $\mathsf{F} = \frac{\pi}{4} \times \mathsf{D}^2 \times \mathsf{P} = \frac{\pi}{4} \times 50^2 \times 0.5 = 981\mathsf{N}$

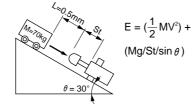

Check if SCK-00-6.5 can be used.

$$E = \frac{1}{2} \times 10 \times (1.0)^{2} + 981 \times 0.025$$

$$\Rightarrow 29.5$$

Therefore, energy can be absorbed by SCK-00-6.5.

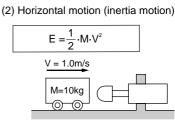
(Graph 1)


Find max. colliding speed under these conditions.

$$\sqrt{=\sqrt{2 \cdot g \cdot H}} = \sqrt{19.6 \times H}$$

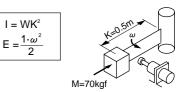
V =√19.6×0.7 = 3.7m/s < 4m/s (SCK-00-60)

 $E = \frac{1}{2} \times 70 \times 3.7^2 + 70 \times 9.8 \times 0.07 = 527.2$ Absorbed energy of SCK-00-60 is larger according to colliding speed characteristics graph of absorbed energy on Graph 1. Therefore, energy can be absorbed by SCK-00-60.


(4) Slope dropping motion

Where 70kgf weight workpieces drop on 30° slope, check if SCK-00-40 can be used. Find max. colliding speed under same conditions.

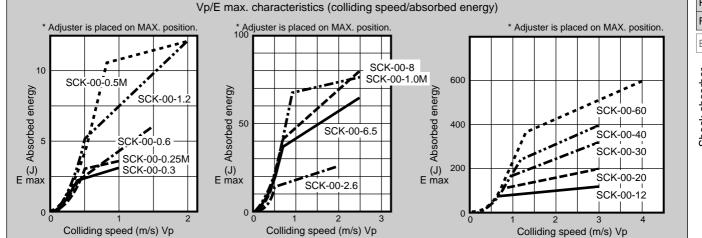
V =
$$\sqrt{19.6 \times H}$$
 (H = 0.5×sin30°)
= $\sqrt{19.6 \times 0.5 \times sin30°}$
= 2.2m/s < 3m/s
E = $(\frac{1}{2} \times 70 \times 2.2^2) + (70 \times 9.8 \times 0.07 \times sin30°)$
⇒193.4J


Therefore, energy can be absorbed by SCK-00-20.

If weight (M) of workpiece is 10kg and colliding speed (V) 1.0m/s.

$$E = \frac{1}{2} \times 10 \times (1.0)^2 = 5.0J$$

SCK-00-1.2 can be used.



(6) Horizontal rotary motion (inertia motion)

Where 70kgf workpiece, radius of gyration (K) 0.5m, and colliding angular speed 1 rad/s, check if SCK-00-1.2 can be used.

$$I = 70 \times (0.5)^{2} = 17.5 \text{ kg/m}^{2}$$
$$E = \frac{(1)^{2}}{2} = \frac{17.5 \times (1)^{2}}{2}$$
$$= 8.8 \text{ J}$$

Therefore, energy can be absorbed by SCK-00-1.2.

* Absorption energy drops at low speed.

CKD

RRC GRC RV3* NHS HR LN FH100 HAP BSA2 BHA/ BHG LHA LHAG HKP HLA/ HLB HLAG HLBG HEP HCP HMF HMFB HFP HLC HGP FH500 HBL HDI нмр H.JI BHE CKG CK CKA CKS CKF CKJ CKL2 CKL2 -*-HC CKH2 CKLB2 F.J FK Ending Shock absorber Related products

3 stages of low, medium and high speed are available.

RRC GRC RV3

> and 3 types of mechanism Low speed: single hole orifice structure, Medium speed: porous irregular orifice structure, High speed: multiple orifice structure is provided according to porous orifice structure and rush speed.

With nonrotating mechanism

Lock screw is used for adjusting mechanism not to be out of order during operation. (Not available for some small models)

Easy installation enabled by outer diameter thread

Nut is attached to outer diameter thread type of M10 to M27 for low speed, and of M10 to M42 for medium/high speed. Easy installation and position adjustment.

Cap is available. (Excluding some sizes)

High efficiency screw machining

Large surface area, since outer pipe is machined with thread, increases outgoing radiation effect.

Industrial chrome plated piston rod

Available within -5 to 70°C

Can be used with wide temperature range due to special oil.

Easy adjustment

Impact absorption can be adjusted by adjuster according to colliding conditions.

SHOCK

CKD

Shock absorber **5** merits

- (1) Stop colliding object safely.
- (2) Increase manufacture cycle.
- (3) Extend service life of machine equipment.
- (4) Improve environment of machine equipment, and reduce noise level.
- (5) Prevent machine from failure.

ABSORBER

RRC GRC RV3* NHS HR LN FH100 HAP BSA2 BHA/ BHG LHA LHAG HKP HLA/ HLB HLAG HLBG HEP HCP HMF **HMFB** HFP HLC HGP FH500 HBL HDI HMD HJI BHE CKG CK CKA CKS CKF CKJ CKL2 CKL2 -*-HC CKH2 CKLB2 NCK/ SCK/FCI FJ FK Ending

Shock absorber Related products

529

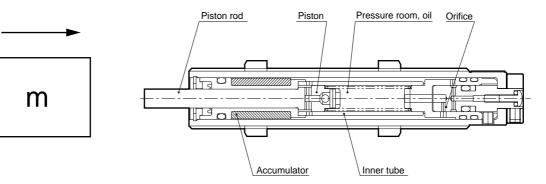
KD

RRC GRC **RV3*** NHS HR LN FH100 HA BS BH BH LH LH ΗK HL/ HLE HL HL ΗE HC ΗN ΗN ΗF HL HG FH HB HD ΗN HJI BHE CKG СК CKA CKS CKF CKJ CKL2 CKL2 -*-HC CKH2 CKLB2 NCK/ SCK/FCI

FJ

FK Ending

Shock absorber


Maximum energy absorption: 1.5 to 720J

Specifications

AP	Descriptions																	
SA2	Series			0.15	0.18	0.3	0.5	0.4	0.6	1	3	5	6.5	8.1	20	40	45	73.5
HA/ HG HA	Type/classifica	tion							ç		djuster eturn type	9						
HAG	Maximum energy	absorpt	ion J	1.5	1.8	2.9	4.9	3.9	5.9	9.8	29.4	49	63.7	79.3	196	392	441	720
KP	Stroke length		mm	8	3		1	0		12	16	30	40	25	35	5	0	80
LA/ LB LAG/ LBG	Max. energy absorption per	k. hour	J/hour	3	.5	5.	.9	8	.8	14.1	20.6	29.4	38.2	32.3	70.5	141.1	164.6	264.6
EP	Max. colliding	L	m/s	0.3 to 1	-	0.3 to 1	-	0.3 to 1	-			0.3 to 1			-	-	-	-
СР	speed	М	m/s	-	0.3 to 2	-	0.3 to 2	-	0.3 to 2		0.3 to 2				0.3	to 2	2	
MF		Н	m/s	-	0.7 to 3	-	0.7 to 3	-	0.7 to 3		0.7 to 3				0.7			
MFB	Max. repeating cycle (20°C) Cyc	le/min.						60						3	0	10	6
FP	Ambient tempe	rature	°C								-5 to 70							
LC	Max. load	L	Ν					1,813				4,900	900					
GP	(resistance)	М	Ν	63	37	1,4	70			2,646	3,528	39	920	6,370	16,660	23,520	27,0	028
H500		Н	Ν								0,020	0,0	20					
	Return time		S					. ().5 or less	s			1 or	less	2 or	less		
BL	Product weight	Product weight Without cap g 26.5 44 68 108 180 406		406	-	411	710	1300	-	-								
DL	Capped g		2	7	4	7	7	3	117	202	436	459	460	760	1410	1560	2010	
MD	Recoiling force Extended N		d N	2	.9	4.	.9	4.5		5.4	12.0	16.6	23.8	16.2	19.6	22.5	24	.5
JL		Compres	sed N	5	.9		9.	.8		14.7	18.0	33.1	71.4	27.2	44.1	68.6	83.3	98.0

Operational principle

If body collides to piston rod, that action is transmitted to oil in pressure room enclosed by piston and inner tube. Oil in pressure room flows out from orifice provided in inner tube.

Resistance F shown by following formula occurs at that time.

 $F = av^2 + bv + cx$ (v is colliding speed, and x is moving stroke. a . b . c are constants.)

No. 1 shows speed square resistance, and places large percentage in resistance.

No. 2 shows viscosity resistance, and places large percentage, if colliding speed is small.

No. 3 shows return force of piston rod. (This can be ignored usually, since value is very small compared with No. 1, No. 2)

The product of resistance generated at this time and the piston rod stroke is the shock absorber absorption energy.

The shock absorber realizes ideal impact absorption by controlling No. 1 and 2.

				Ho	w to orc	ler
How to order						RRC
Low speed type						GRC
FCK-L - 0.15 - C						RV3*
						NHS
Medium speed type						HR
(FCK-M)-(0.18)-(C)				Model n	0.	LN
			ype	type	ype	FH100
High speed type			edt	beed	ed t	HAP
(FCK-H) - (0.18) - (C)			spe	l as m	spe	BSA2
			Low speed type	Medium speed type	High speed type	BHA/ BHG
	Symbol	Descriptions	FCK-L	FCK-M	FCK-H	LHA
Model no.		eries (max. energy absorpt	ion)			LHAG
B Series (max. energy absorption)	0.15	1.5J				HKP
	0.18	1.8J		•	•	HLA/ HLB
	0.3	2.9J	•			HLAG/ HLBG
	0.4	3.9J	•			HEP
	0.5	4.9J		•	•	HCP
	0.6	5.9J		•	•	HMF
	1	9.8J	•	•	•	HMFB
	3	29.4J	•	•	•	HFP
	5	49J 63.7J	•	•	•	HLC
	6.5 8.1	79.3J	•	•	•	HGP
	20	196J		•	•	FH500
	40	392J		•	•	HBL
	45	441J		•	•	HDL
	73.5	720J		•	•	HMD
	- C C	Option				HJL
Option *1	Blank	Without cap	•	•	•	BHE
I I	С	Capped	•	•	•	CKG
	-					

* 1: No cap is not available for 6.5 (63.7J), 45 (441 J), 73.5 (720J).

is not available.

<Example of model number>

Model no.: Shock absorber medium speed type
Series : MAX energy 1.8J
Option : Capped

СК

CKA

CKS CKF CKJ CKL2

CKL2 -*-HC

CKH2 CKLB2 NCK/ SCK/FCK FJ FK

CKD 531

• FCK-*-*

RRC GRC RV3*

NHS

HR

LN FH100 HAP BSA2 BHA/ BHG LHA

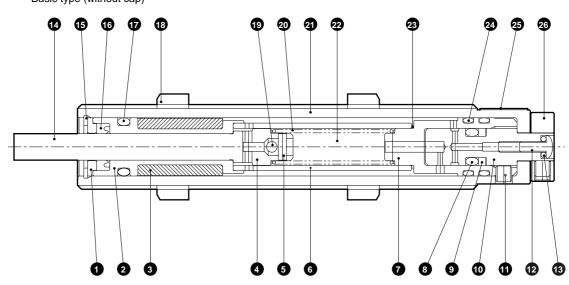
LHAG

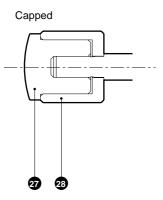
HKP

HLA/ HLB HLAG/ HLBG

HEP HCP HMF HMFB

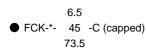
HFP HLC HGP FH500

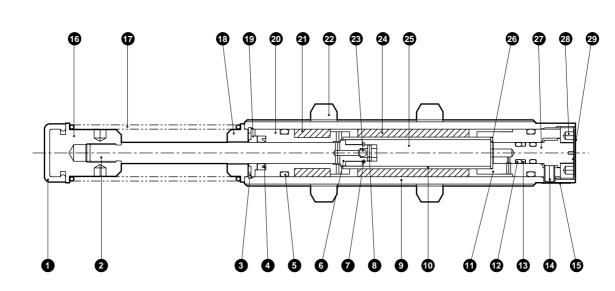

HBL HDL HJL BHE CKG CK CKA CKS


CKF

CKJ

Internal structure and parts list

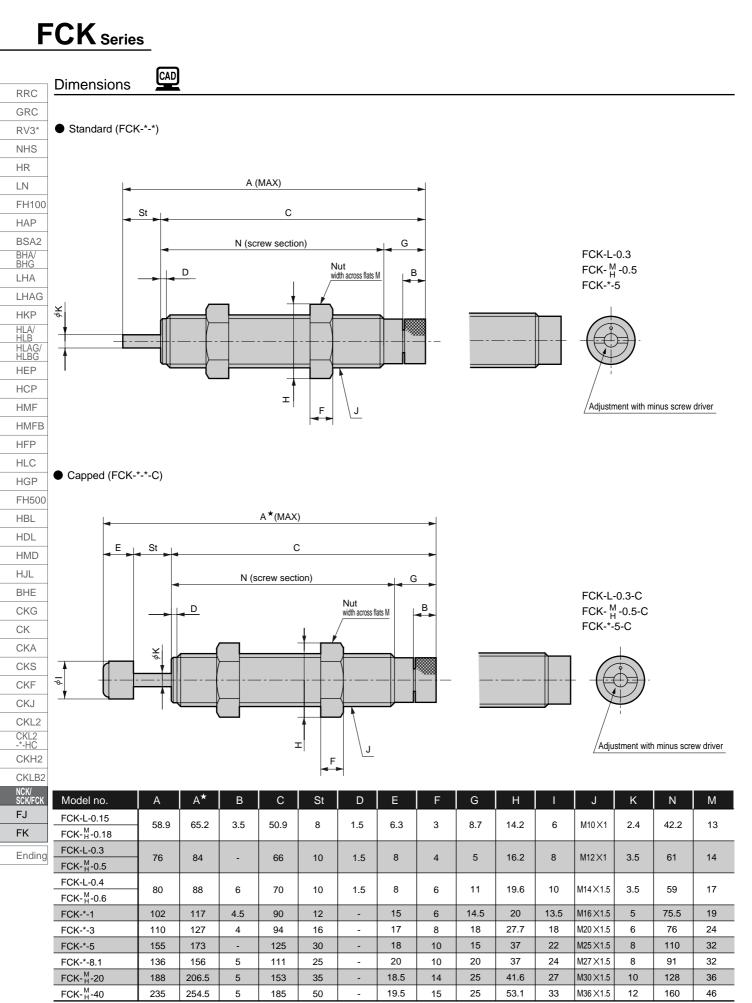

Parts list


CKL2	No.	Parts name	Material	No.	Parts name	Material
CKL2 -*-HC	1	Packing seal retainer	Copper alloy	15	Snap ring	Steel
CKH2	2	Guide	Copper alloy	16	U packing seal	Nitrile rubber
CKLB2	3	Accumulator	Nitrile rubber	17	O ring	Nitrile rubber
NCK/ SCK/FCK	4	Piston	Copper alloy	18	Hexagon nut	Steel
FJ	5	Spring pin	Stainless steel	19	Steel ball	Bearing steel
	6	Inner tube	Steel	20	Spring	Piano wire
FK	7	Bottom	Copper alloy	21	Outer tube	Steel
Ending	8	O ring	Nitrile rubber	22	Oil	Oil
	9	Back up ring	Resin	23	Spacer	Nitrile rubber
	10	Adjustment shaft	Copper alloy	24	O ring	Nitrile rubber
	11	Hexagon socket head set screw	Alloy steel	25	Product name plate	
	12	Stopped cross headed set screw	Alloy steel	26	Dial	Copper alloy
	13	O ring	Nitrile rubber	27	Rod cap	Resin
	14	Piston rod	Alloy steel	28	Stiffening ring	Steel

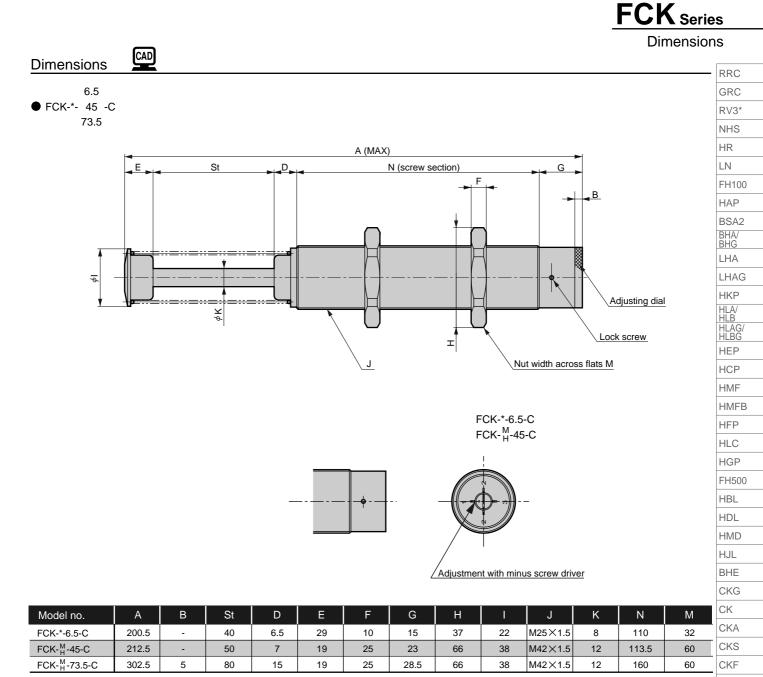
Note: Some structure differs per model.

FCK series

Internal structure and parts list

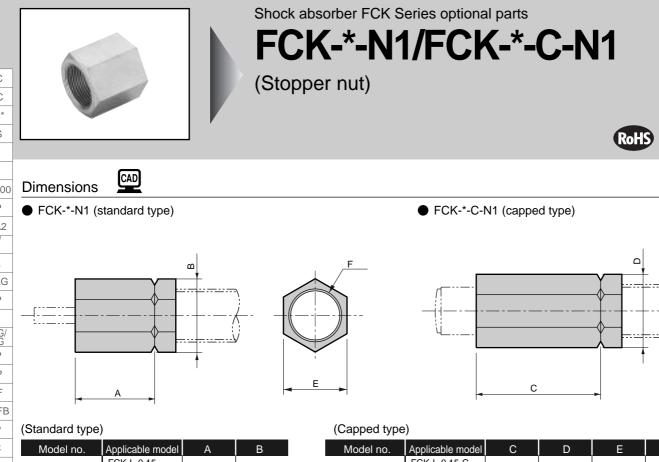


Parts list


No.	Parts name	Material	No.	Parts name	Material	
1	Rod cover	Urethane rubber	16	Spring guide	Steel	
2	Piston rod	Alloy steel	17	Spring	Piano wire	
3	Snap ring (round R type)	Steel	18	Spring guide	Steel	
4	U packing seal	Nitrile rubber	19	Packing seal retainer	Copper alloy	
5	O ring	Nitrile rubber	20	Guide	Copper alloy	
6	Piston	Copper alloy	21	Accumulator	Nitrile rubber	
7	Snap ring (E type)	Steel	22	Hexagon nut	Steel	
8	Spring pin	Stainless steel	23	Steel ball	Bearing steel	
9	Outer tube	Steel pipe	24	Accumulator	Nitrile rubber	
10	Inner tube	Steel pipe	25	Oil	Oil	
11	Bottom	Copper alloy	26	Washer	Steel	
12	O ring	Nitrile rubber	27	Adjustment axis	Copper alloy	
13	Back up ring	Resin	28	Holder screw	Steel	
14	Hexagon socket head set screw	Alloy steel	29	Label	Steel	
15	Product name plate					

Note 1: Some structure differs per model.

Note 2: The rod cover (plastic) cap cannot be attached to the 45 and 73.5 sizes.


Note: The above table * shows low speed (L), medium speed (M), and high speed (H).

Note: The above table * shows low speed (L), medium speed (M), and high speed (H).

CKJ CKL2 CKL2 CKH2 CKH2 CKLB2 NCK/ SCK/FCK FJ FK Ending

Shock absorber Related products

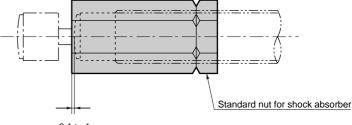
	(0.0.00.00.00.00.00.00.00.00.00.00.00.00	-		
HLC	Model no.	Applicable model	А	В
HGP		FCK-L-0.15		
FH500	FCK-0.18-N1	FCK-M-0.18	10	15
111300		FCK-H-0.18		
HBL		FCK-L-0.3		
HDL	FCK-0.5-N1	FCK-M-0.5	12	16.2
		FCK-H-0.5		
HMD		FCK-L-0.4		
HJL	FCK-0.6-N1	FCK-M-0.6	12	19.6
BHE		FCK-H-0.6		
		FCK-L-1		
CKG	FCK-1-N1	FCK-M-1	15	21.9
СК		FCK-H-1		
		FCK-L-3		
CKA	FCK-3-N1	FCK-M-3	30	27.7
CKS		FCK-H-3		
CKF		FCK-L-5		
-	FCK-5-N1	FCK-M-5	20	37
CKJ		FCK-H-5		
CKL2		FCK-L-8.1		
CKL2	FCK-8.1-N1	FCK-M-8.1	35	37
-*-HC		FCK-H-8.1		
CKH2	FCK-20-N1	FCK-M-20	38	41.6
CKLB2		FCK-H-20	30	41.0
NCK/	FCK-40-N1	FCK-M-40	45	53.1
NUN COVIECV	FUR-40-INT	FCK-H-40	40	55.1

NCK/ SCK/I FJ FK

Ending

When using stopper nut, please note on following points.

FCK-H-40


If no caps, use this with extending 0.1mm to 1mm forward to piston rod direction from shock absorber (cylinder top).

If capped, uses this with extending cap length plus 0.5mm to 1mm forward to piston rod direction from shock absorber (cylinder section).

- Fix with standard nut for shock absorber after stopper nut is installed.
- This can not be used with deflection angle adaptor.

Model no.	Applicable model	С	D	Е	F			
	FCK-L-0.15-C							
FCK-0.18-C-N1	FCK-M-0.18-C	16	15	13	M10×1			
	FCK-H-0.18-C							
	FCK-L-0.3-C							
FCK-0.5-C-N1	FCK-M-0.5-C	16	16.2	14	M12×1			
	FCK-H-0.5-C							
	FCK-L-0.4-C							
FCK-0.6-C-N1	FCK-M-0.6-C	20	19.6	17	M14×1.5			
	FCK-H-0.6-C							
	FCK-L-1-C							
FCK-1-C-N1	FCK-M-1-C	30	21.9	19	M16×1.5			
	FCK-H-1-C							
	FCK-L-3-C							
FCK-3-C-N1	FCK-M-3-C	47	27.7	24	M20×1.5			
	FCK-H-3-C							
	FCK-L-5-C							
FCK-5-C-N1	FCK-M-5-C	32	37	32	M25×1.5			
	FCK-H-5-C							
	FCK-L-6.5-C							
FCK-6.5-C-N1	FCK-M-6.5-C	50	37	32	M25×1.5			
	FCK-H-6.5-C							
	FCK-L-8.1-C							
FCK-8.1-C-N1	FCK-M-8.1-C	55	37	32	M27×1.5			
	FCK-H-8.1-C							
FCK-20-C-N1	FCK-M-20-C	58	41.6	36	M20 X1 5			
FCK-20-C-INT	FCK-H-20-C	20	41.0	30	M30×1.5			
FCK-40-C-N1	FCK-M-40-C	65	53.1	46	M36×1.5			
FUK-40-U-INI	FCK-H-40-C	co	53.1	40				

CAD

CKD

Shock absorber FCK Series optional parts

CAD

(Deflection angle adaptor)

Dimensions

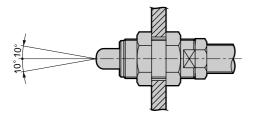
FCK-*-A

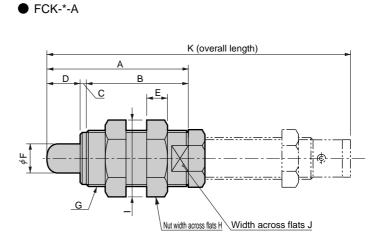
RoHS CAD

RRC GRC RV3*

NHS

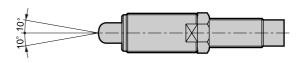
HR LN

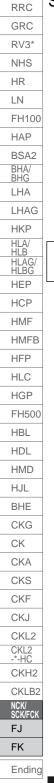

FH100 HAP

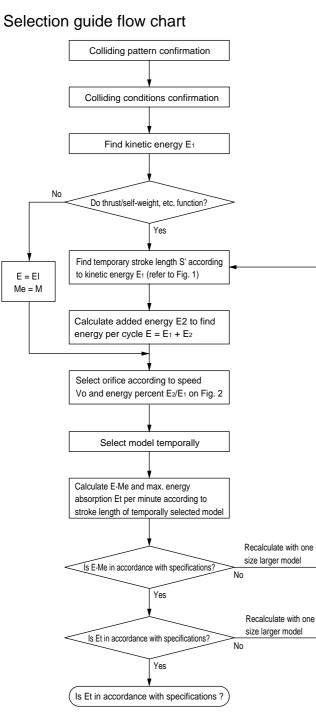

BSA2 BHA/ BHG

LHA

Specifications


Max. working deflection angle $\pm 10^\circ$





Model no.	Applicable model	А	В	С	D	E	F	G	Н	1	J	К	End section material
	FCK-L-0.15												
FCK-0.18-A	FCK-M-0.18	38	28	2	8	6	8	M16×1.5	19	21.9	13	75.7	
	FCK-H-0.18												
	FCK-L-0.3												
FCK-0.5-A	FCK-M-0.5	48	35	3	10	5	10	M18×1.5	21	24.3	14	97.8	
	FCK-H-0.5												Plastic
	FCK-L-0.4												(POM)
FCK-0.6-A	FCK-M-0.6	51	38	3	10	7	11	M22×1.5	24	27.7	19	103	
	FCK-H-0.6												_
	FCK-L-1												
FCK-1-A	FCK-M-1	60	45	3	12	7	12	M22×1.5	24	27.7	19	129	
	FCK-H-1												
	FCK-L-3												
FCK-3-A	FCK-M-3	68	49	3	16	10	14	M27 ×1.5	32	37	24	146	
	FCK-H-3												_
	FCK-L-5	107 5	07.5	10		4.5	10		10	50.4		040	
FCK-5-A	FCK-M-5	107.5	67.5	10	30	15	16	M36×1.5	46	53.1	32	212	
	FCK-H-5												-
	FCK-L-8.1	07		10	05	45	40		40	50.4		400	Iron ovetere
FCK-8.1-A	FCK-M-8.1	97	62	10	25	15	16	M36×1.5	46	53.1	32	188	Iron system
	FCK-H-8.1												-
FCK-20-A	FCK-M-20	127	82	10	35	15	18	M40×1.5	50	57.7	36	255	
	FCK-H-20												-
FCK-40-A	FCK-M-40	167	107	10	50	15	20	M45×1.5	55	63.5	41	322	
	FCK-H-40												

- When using deflection angle adaptor, please note on following points.
- To be±10°C or less from center line of cap section of adaptor for deflection angle.
- This can not be used with stopper nut.
- Not available for capped type.

Symbol	Working conditions	Unit
E	Absorbed energy	J
E1	Kinetic energy	J
E2	Thrust/self-weight energy	J
G	Position of center of gravity	
S	FCK stroke length	m
g	Gravity acceleration (9.8)	m/s ²
N	Number of rotation	rpm
Me	Colliding object equivalent weight	kg
Td	Motor start torque	N⋅m
К	Reduction ratio	

Example of colliding pattern

-	_	Horizontal colliding	
	a. Simple horizontal colliding	-	c. Drive force of motor applies
	a. Campie nonzontal containg		
Applications			
Kinetic energy E1 (J)	$E_1 = \frac{1}{2} \cdot M \cdot V^2$	$E_1 = \frac{1}{2} \cdot M \cdot V^2$	$E_1 = \frac{1}{2} \cdot M \cdot V^2$
Thrust/self energy E ₂ (J)		E ₂ = F·S	$E_2 = 2 \cdot \frac{K}{D} \cdot Td \cdot S$
All absorbed energy E (J)	E = E1	E = E1 + E2	E = E1 + E2
Colliding object equiv. weight Me (kg)	Me = M	$Me = \frac{2 \cdot E}{V^2}$	$Me = \frac{2 \cdot E}{V^2}$
Absorbed energy per hour Et (J/h)	$E_t = 60 \cdot E \cdot n$	$E_t = 60 \cdot E \cdot n$	Et = 60∙E∙n
		Vertical colliding	
Applications	d. Free drop	E. Cylinder lower limit stopper	f. Cylinder upper limit stopper
Kinetic energy E1 (J)	$E_1 = \frac{1}{2} \cdot M \cdot V^2$	$E_1 = \frac{1}{2} \cdot M \cdot V^2$	$E_1 = \frac{1}{2} \cdot M \cdot V^2$
Thrust/self energy E ₂ (J)	$E_2 = M \cdot g \cdot S$	$E_2 = (M {\cdot} g + F) {\cdot} S$	E₂ = (F-M⋅g)⋅S
All absorbed energy E (J)	E = E1 + E2	E = E1 + E2	E = E1 + E2
Colliding object equiv.weight Me (kg)	$Me = \frac{2 \cdot E}{V^2} (V = \sqrt{2 \cdot g \cdot H})$	Me = $\frac{2 \cdot E}{V^2}$	Me = $\frac{2 \cdot E}{V^2}$
	v	v	
Absorbed energy per hour	Et = 60·E·n	Et = 60·E·n	Et = 60∙E∙n
			Et = 60∙E∙n
Absorbed energy per hour		Et = 60·E·n	
Absorbed energy per hour Et (J/h)	Et = 60∙E∙n	$E_t = 60 \cdot E \cdot n$ Slope colliding h. Thrust of cylinder applies	
Absorbed energy per hour Et (J/h) Applications Kinetic energy E1 (J) Thrust/self energy E2 (J)	Et = $60 \cdot E \cdot n$ g. Free drop	$E_{t} = 60 \cdot E \cdot n$ Slope colliding h. Thrust of cylinder applies $E_{t} = \frac{1}{2} \cdot M \cdot V^{2}$	i. Thrust of cylinder applies
Absorbed energy per hour Et (J/h) Applications Kinetic energy E1 (J) Thrust/self energy E2 (J) All absorbed energy E (J)	Et = 60·E·n g. Free drop $ext{integration}$	E ₁ = 60·E·n Slope colliding h. Thrust of cylinder applies M θ E ₁ = $\frac{1}{2}$ ·M·V ² E ₂ = (M·g·sin θ + F)·S E = E ₁ + E ₂	i. Thrust of cylinder applies $\frac{\forall}{E_{1}} = \frac{1}{2} \cdot M \cdot V^{2}$ $E_{2} = (F-M \cdot g \cdot \sin \theta) \cdot S$ $E = E_{1} + E_{2}$
Absorbed energy per hour Et (J/h) Applications Kinetic energy E1 (J) Thrust/self energy E2 (J) All absorbed energy E (J) Collding object equiv. weight Me (kg)	Et = $60 \cdot \text{E} \cdot n$ g. Free drop θ Et = $\frac{1}{2} \cdot \text{M} \cdot \text{V}^2$ E2 = M·g·S·sin θ	Et = 60·E·n Slope colliding h. Thrust of cylinder applies $E_1 = \frac{1}{2} \cdot M \cdot V^2$ E2 = (M·g·sin θ + F)·S	i. Thrust of cylinder applies $ \frac{V}{E_{1}} + \frac{1}{2} \cdot M \cdot V^{2} $ $ E_{2} = (F-M \cdot g \cdot \sin \theta) \cdot S $
Absorbed energy per hour E_t (J/h) Applications Kinetic energy E_1 (J) Thrust/self energy E_2 (J) All absorbed energy E (J) Colliding object equiv. weight	Et = 60·E·n g. Free drop I_{d} I	Et = 60·E·n Slope colliding h. Thrust of cylinder applies $E_1 = \frac{1}{2} \cdot M \cdot V^2$ E2 = (M·g·sin θ + F)·S E = E1 + E2 Me = $\frac{2 \cdot E}{V^2}$ Et = 60·E·n	i. Thrust of cylinder applies $ \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \hline \\ \hline$
Absorbed energy per hour E_t (J/h) Applications Kinetic energy E_1 (J) Thrust/self energy E_2 (J) All absorbed energy E (J) Collding object equiv. weight Me (kg)	Et = 60·E·n g. Free drop I_{d} I	Et = 60·E·n Slope colliding h. Thrust of cylinder applies $E_1 = \frac{1}{2} \cdot M \cdot V^2$ E2 = (M·g·sin θ + F)·S E = E1 + E2 Me = $\frac{2 \cdot E}{V^2}$ Et = 60·E·n h colliding	i. Thrust of cylinder applies $ \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \hline \\ \hline$
Absorbed energy per hour E_t (J/h) Applications Kinetic energy E_1 (J) Thrust/self energy E_2 (J) All absorbed energy E (J) Collding object equiv. weight Me (kg) Absorbed energy per hour E_t (J/h) Applications Kinetic energy	Et = 60·E·n g. Free drop Et = $\frac{1}{2}$ ·M·V ² E2 = M·g·S·sin θ E = E1 + E2 Me= $\frac{2 \cdot E}{V^2}$ (V= $\sqrt{2 \cdot g \cdot L \cdot sin \theta}$) Et = 60·E·n Oscillation j. Free drop	Et = 60·E·n Slope colliding h. Thrust of cylinder applies $E_1 = \frac{1}{2} \cdot M \cdot V^2$ E2 = (M·g·sin θ + F)·S E = E1 + E2 Me = $\frac{2 \cdot E}{V^2}$ Et = 60·E·n h colliding	i. Thrust of cylinder applies $ \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \hline \\ \hline$
Absorbed energy per hour E_t (J/h) Applications Kinetic energy E_1 (J) Thrust/self energy E_2 (J) All absorbed energy E (J) Colliding object equiv. weight Me (kg) Absorbed energy per hour E_t (J/h) Applications Kinetic energy E_1 (J) Thrust/self energy	Et = 60·E·n g. Free drop Et = $\frac{1}{2}$ ·M·V ² E2 = M·g·S·sin θ E = Et + E2 Me= $\frac{2\cdot E}{V^2}$ (V= $\sqrt{2\cdot g \cdot L \cdot \sin \theta}$) Et = 60·E·n Oscillation j. Free drop	Et = 60·E·n Slope colliding h. Thrust of cylinder applies $E_1 = \frac{1}{2} \cdot M \cdot V^2$ E2 = (M·g·sin θ + F)·S E = E1 + E2 Me = $\frac{2 \cdot E}{V^2}$ Et = 60·E·n h colliding k. Motor, etc. torque applies	i. Thrust of cylinder applies $ \begin{array}{c} $
Absorbed energy per hour Et (J/h) Applications Kinetic energy E1 (J) Thrust/self energy E2 (J) All absorbed energy E (J) Collding object equiv. weight Me (kg) Absorbed energy per hour Et (J/h) Applications Kinetic energy E1 (J)	Et = 60·E·n g. Free drop Et = $\frac{1}{2}$ ·M·V ² E2 = M·g·S·sin θ E = E1 + E2 Me= $\frac{2 \cdot E}{\sqrt{2}}$ (V= $\sqrt{2}\cdot g \cdot L \cdot sin\theta$) Et = 60·E·n Oscillation j. Free drop M E1 = M·g·H	Et = 60·E·n Slope colliding h. Thrust of cylinder applies $E_1 = \frac{1}{2} \cdot M \cdot V^2$ E2 = (M·g·sin θ + F)·S E = E1 + E2 Me = $\frac{2 \cdot E}{V^2}$ Et = 60·E·n h colliding k. Motor, etc. torque applies $E_1 = \frac{J \cdot \omega^2}{2}$ or $\frac{1}{2} \cdot M \cdot V^2$	i. Thrust of cylinder applies $E_{1} = \frac{1}{2} \cdot M \cdot V^{2}$ $E_{2} = (F - M \cdot g \cdot \sin \theta) \cdot S$ $E = E_{1} + E_{2}$ $Me = \frac{2 \cdot E}{V^{2}}$ $E_{1} = 60 \cdot E \cdot n$ Rotation colliding I. Motor, etc. torque applies $E_{1} = \frac{J \cdot \omega^{2}}{2} = \frac{M \cdot D^{2} \cdot \omega^{2}}{16}$
Absorbed energy per hour E_t (J/h) Applications Kinetic energy E_1 (J) Thrust/self energy E_2 (J) All absorbed energy per hour E_t (J/h) Absorbed energy per hour E_t (J/h) Applications Kinetic energy E_1 (J) Thrust/self energy E_1 (J) Thrust/self energy E_2 (J) All absorbed energy	Et = 60·E·n g. Free drop Et = $\frac{1}{2}$ ·M·V ² E2 = M·g·S·sin θ E = E1 + E2 Me= $\frac{2\cdot E}{\sqrt{2}}$ (V= $\sqrt{2\cdot g\cdot L\cdot \sin \theta}$) Et = 60·E·n Oscillation j. Free drop M E1 = M·g·H E2 = $\frac{r}{R}$ ·M·g·S	Et = 60·E·n Slope colliding h. Thrust of cylinder applies $E_1 = \frac{1}{2} \cdot M \cdot V^2$ $E_2 = (M \cdot g \cdot sin \theta + F) \cdot S$ $E = E_1 + E_2$ $Me = \frac{2 \cdot E}{V^2}$ $E_1 = 60 \cdot E \cdot n$ h colliding k. Motor, etc. torque applies $E_1 = \frac{J \cdot \omega^2}{2} \text{ or } \frac{1}{2} \cdot M \cdot V^2$ $E_2 = \frac{T}{R} \cdot S$ $E = E_1 + E_2$	i. Thrust of cylinder applies $E_1 = \frac{1}{2} \cdot M \cdot V^2$ $E_2 = (F - M \cdot g \cdot \sin \theta) \cdot S$ $E = E_1 + E_2$ $Me = \frac{2 \cdot E}{V^2}$ $E_1 = 60 \cdot E \cdot n$ Rotation colliding 1. Motor, etc. torque applies $E_1 = \frac{J \cdot \omega^2}{2} = \frac{M \cdot D^2 \cdot \omega^2}{16}$ $E_2 = \frac{T}{R} \cdot S$

FCK series Selection guide

RRC

GRC

RV3* NHS

HR LN

Shock absorber selection guide

1 Make colliding pattern of device clear

Horizontal motion b.	Simple horizontal colliding Colliding with thrust of cylinder Colliding with drive force of motor
	Colliding by free drop Colliding with thrust of cylinder (down) Colliding with thrust of cylinder (up)
Slope motion g h i.	Colliding by free slide Colliding with thrust of cylinder (down) Colliding with thrust of cylinder (up)
J. Oscillation/rotary motion k.	Colliding by free oscillating drop Colliding with motor, etc. torque (oscillation) Colliding with motor, etc. torque (rotation)

Note: Refer to "Example of colliding pattern".

	Example of selection					
Applications	Vertical colliding e. Cylinder lower limit stopper					
Kinetic energy E1 (J)	$E_1 = \frac{1}{2} \cdot M \cdot V^2$					
Thrust/gravity energy E ₂ (J)	E2 = (Mg + F)/S					
All absorbed energy E (J)	E = E1 + E2					
Colliding object equivalent weight Me (kg)	$Me = \frac{2 \cdot E}{V^2}$					
Absorbed energy per hour Et (J/h)	Et = 60·E·n					

|--|

)	Horizontal colliding				
	Symbol	Working conditions	Unit		
	М	Colliding object weight	kg		
	V	Colliding speed	m/s		
	F	Pressure	N		
	n	Frequency	cycle/min.		
	t	Ambient temperature	°C		
	Rt	Return time	s		

Slope colliding			
Symbol	Working conditions	Unit	
М	Colliding object weight	kg	
V	Colliding speed	m/s	
F	Pressure	N	
n	Frequency	cycle/min.	
t	Ambient temperature	°C	
Rt	Return time	s	
L	Colliding object moving distance	m	
A	θ Angle degree		
	Angle degree	deg	

Vertical colliding				
	Working conditions	Unit		
М	Colliding object weight	kg		
V	Colliding speed	m/s		
F	Pressure	N		
n	Frequency	cycle/min.		
t	Ambient temperature	°C		
Rt	Return time	s		
Н	Drop height	m		
Vibrati	on/rotation collidin	g		
Symbol	Working conditions	Unit		
М	Colliding object weight	Kg		
V	Colliding speed	m/s		
Т	Torque	N∙m		
n	Frequency	cycle/min.		
t	Ambient temperature	°C		
Rt	Return time	s		
ω	Angular speed	rad/s		
J	Moment of inertia	kg∙m²		
R	*1	m		
r	*2	m		
α·β	Angle degree	deg		
Н	Drop height	m		
D	Rotor diameter	m		

*1 Distance from center of rotation to colliging point

*2 Distance from center of rotation to center of gravity

3 Calculate kinetic energy E₁ according to "Example of colliding pattern"

 Calculate kinetic energy E1 according to "Example of colliding pattern" (page 538).

$$E = \frac{1}{2} M \cdot V^2 = \frac{1}{2} \times 15 \times 1.42^2$$

= 15.1J

Shock absorber Related products

539

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
BHA/ BHG
LHA
LHAG
HKP
HLA/ HLB
HLAG/ HLBG
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
СК
CKA
CKS
CKF
CKJ
CKL2
CKL2 -*-HC
CKH2
CKLB2
NCK/ SCK/FCK
FJ
FK
Ending
LIIUIIIg

5 Calculate absorbed energy E according to "Example of colliding pattern" Calculate thrust/self weight energy E2 according to "Example of colliding pattern". Calculate S (stroke length of FCK) in expression with temporary stroke length S' selected at Step 4. Calculate absorbed energy E according to "Example of colliding pattern". 6 Shock absorber temporary selection Select orifice type according to energy percent (thrust/self weight energy, kinetic energy) on Fig. 2 (page 541), then select a model temporally according to calculated absorbed energy E. Note 1: Allowable energy absorption may vary depending on colliding speed. Refer to pages 542 to 543. 7 Re-calculate absorbed energy E with temporally selected model Calculate absorbed energy E₂ according to "Example of colliding pattern". Calculate S (stroke length of FCK) in expression with temporary stroke length S' selected at Step 6.

 Calculate absorbed energy E according to "Example of colliding pattern".

8 Calculate energy Et per hour

 Calculate energy per hour Et according to "Example of colliding pattern".

9 Check colliding object equivalent weight M

 Calculate colliding object equivalent weight M according to "example of colliding pattern".

10 Selection confirmation

If calculated absorbed energy, energy per hour, colliding object equivalent weight, cycle rate, ambient temperature and return time are in accordance with specifications of selected shock absorber, it is OK. If exceeding specifications range, select one size larger shock absorber according to model, selected before, then recalculate conditions.

Example of selection

$$E_2 = (M \cdot g + F) \cdot S = (15 \times 9.8 + 245.5) \times 0.03$$

= 11.8J
$$E = E_1 + E_2 = 15.1 + 11.8 = 26.9J$$

 $\frac{E_2}{E_1} = \frac{11.8}{15.1} = 0.8$

Select porous orifice (FCK-H-3) from model larger than E = 26.9 temporally.

 $E_2 = (15 \times 9.8 + 245.5) \times 0.016 = 6.28J$ E = 15.1 + 6.28 = 21.4J

 $Et = 60 \cdot E \cdot n = 60 \times 21.4 \times 10 = 1284 J/h$

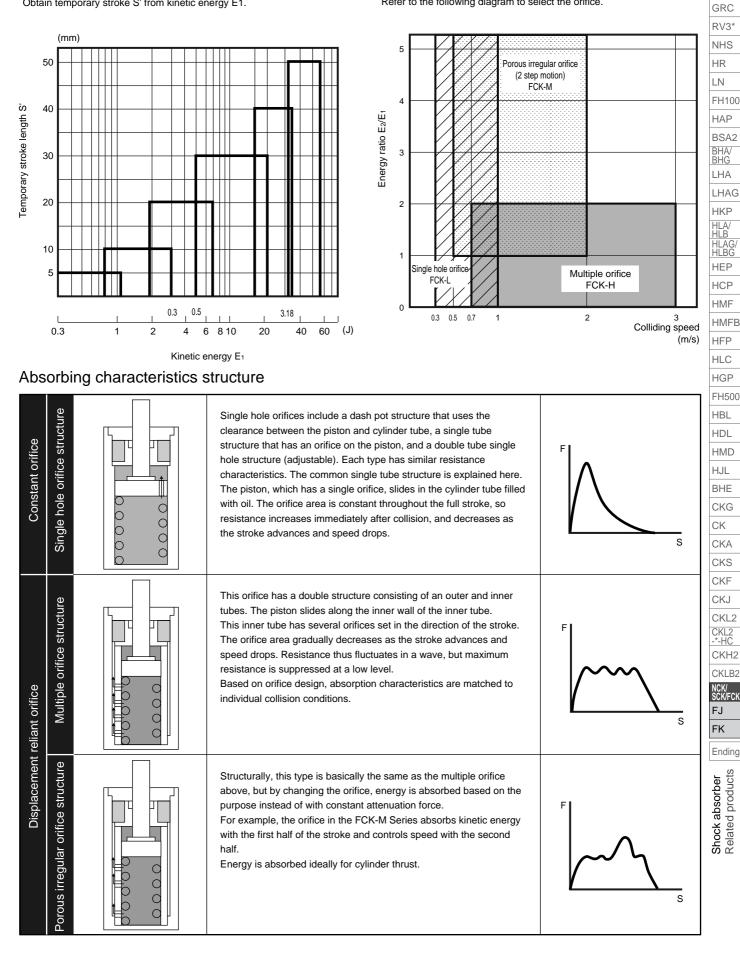
$$Me = \frac{2E}{V^2} = \frac{2 \times 21.4}{1.42^2} = 21.2 \text{kg}$$

		Calculated value	FCK-H-3 specified value	Judgment
Е	J	21.4	29.4 or less	OK
Et	J/h	1284	20580 or less	OK
Me	kg	21.2	29 or less	OK
n	cycle/min.	10	60 or less	ОК
t	°C	23	-5 to 70	ОК
Rt	S	2	0.5 and over	ОК

(CAUTION)

Use colliding speed just before colliding to shock absorber to select shock absorber by calculation. This speed differs from average speed (cylinder stroke/moving time).

Calculate speed just before colliding or find actual speed, or use 1.5 to twice average speed for selecting model by calculation.



RRC

Fig. 1. Temporary selection graph

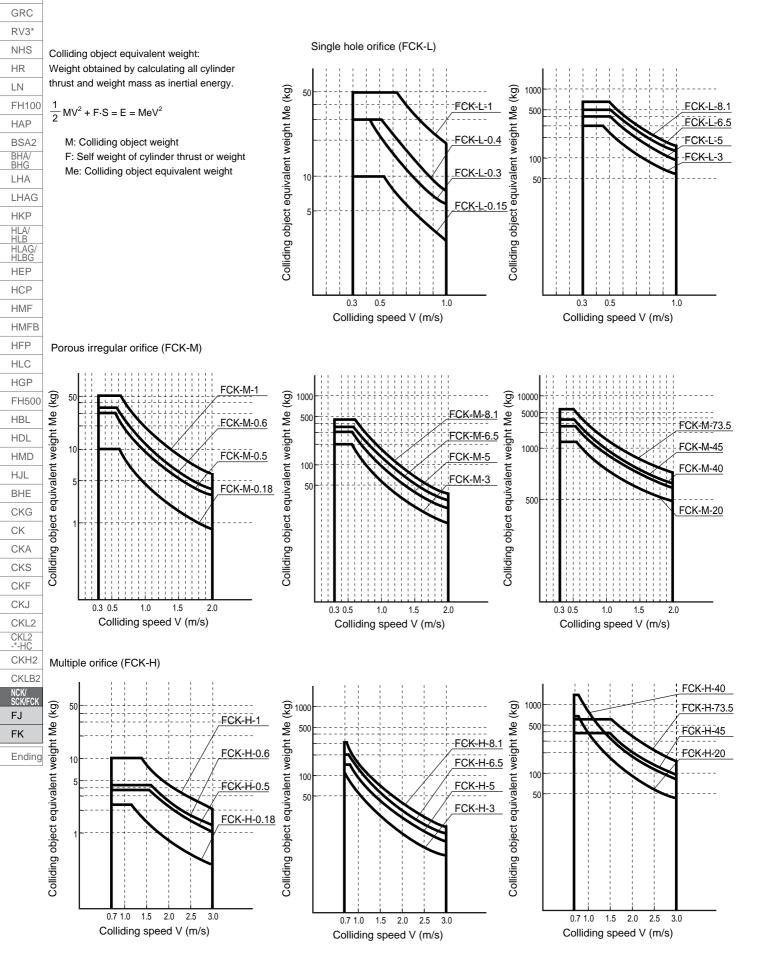
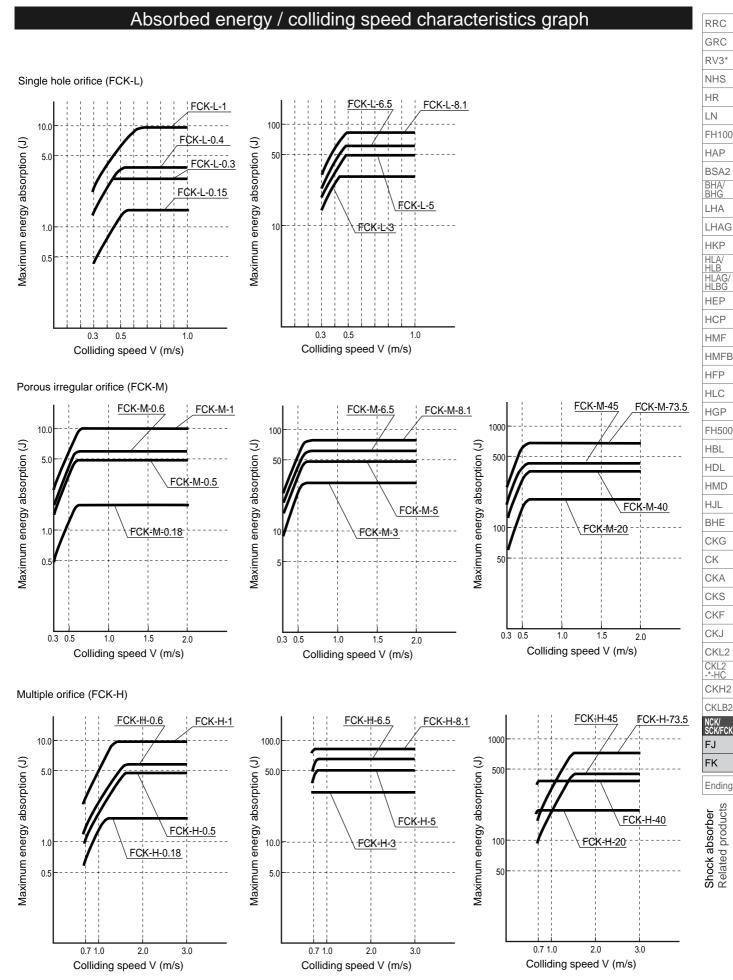

Obtain temporary stroke S' from kinetic energy E1.

Fig. 2. Energy ratio (thrust/self weight energy, inertia energy E1) Refer to the following diagram to select the orifice.


RRC

Colliding object equivalent weight / colliding speed characteristics graph

542 **CKD**

Selection guide

543

Example of selecting model by calculation RRC

RRC			
GRC		Selection example 1	Selection example 2
RV3*	1. Applications	Horizontal colliding with thrust of cylinder	Horizontal colliding with drive force of motor
NHS HR		v t	Td v h
LN			
FH100			
HAP		Cylinder bore size = ϕ 40	Motor start torque Td = 0.196N⋅m
BSA2 BHA/		Pressure = 0.5MPa	Wheel diameter of carriage $D = 50mm$
BHG			Reduction ratio of carriage K = 10
LHA LHAG	2. Colliding conditions	M = 30kg	M = 150kg
HKP		V = 0.6m/s	V = 0.785m/s
HLA/ HLB		F = 628.3N	F = 78.4N K 10
HLAG/ HLBG		$(F = \frac{\pi}{4} \times 40^2 \times 0.5 = 628.4N)$ n = 20 cycle/min.	$(F = 2 \cdot \frac{K}{D} \cdot Td = 2 \times \frac{10}{0.05} \times 0.196 = 78.4N)$ n = 5 cycle/min
HEP		$t = 23^{\circ}C$	$t = 23^{\circ}C$
HCP HMF		Rt = 3S	Rt = 2S
HMFB			
HFP			
HLC			
HGP	3. Kinetic energy	$E_1 = \frac{1}{2} MV^2 = \frac{1}{2} \times 30 \times 0.6^2 = 5.4J$	$E1 = \frac{1}{2} MV^2 = \frac{1}{2} \times 150 \times 0.785^2 = 46.2J$
FH500 HBL	E1		
HDL			
HMD	4. Temporary	S' = 20mm from Fig. 1	S' = 50mm from Fig. 1
HJL	stroke length		
BHE	S'		
CKG CK			K 10
CKA	5. Thrust/self-weight Energy E2	$E_2 = F \cdot S = 628.3 \times 0.02 = 12.57J$ $E = E_1 + E_2 = 5.4 + 12.57 = 17.97J$	$E_2 = 2 \cdot \frac{K}{D} \cdot Td \cdot S = 2 \times \frac{10}{0.05} \times 0.196 \times 0.05$
CKS	Absorbed energy E		= 3.92J E = E ₁ + E ₂ = 46.2 + 3.92 = 50.12J
CKF			
CKJ	6. Temporary selection	$\frac{E_2}{E_1} = \frac{12.57}{5.4} = 2.3$	$\frac{E_2}{E_1} = \frac{3.92}{46.2} = 0.08$
CKL2 CKL2 -*-HC		Select porous irregular orifice (FCK-M-3) temporally	Select multiple orifice (FCK-H-6.5) temporally
-*-HC CKH2			
CKLB2	7. Recalculation of	E₂ = F⋅S = 628.3 × 0.016 = 10.05J	$E_2 = 2 \cdot \frac{K}{D} \cdot Td \cdot S = 2 \times \frac{10}{0.05} \times 0.196 \times 0.04$
NCK/ SCK/FCK	absorbed energy	E = E1 + E2 = 15.45J	= 3.14J
FJ			$E = E_1 + E_2 = 49.34J$
FK	0. En annun an haun		
Ending	 Energy per hour Et 	$Et = 60 \cdot E \cdot n \times E \cdot n = 60 \times 15.45 \times 20 = 18540 J/h$	$Et = 60 \times E \cdot n = 60 \times 49.34 \times 5 = 14802 J/h$
			25
	9. Colliding object	$Me = \frac{2E}{V^2} = 85.8kg$	$Me = \frac{2E}{V^2} = \frac{2 \times 49.34}{0.785^2} = 160 kg$
	equivalent weight Me		
	10. Confirmation	All of E, Et, Me, n, t and Rt are OK	All of E, Et, Me, n, t and Rt are OK
		Determine FCK-M-3	Determine FCK-H-6.5
F 4			
54	4 CKD		

Selection example 3	Selection example 4	GR
		RV
arriage dropping slope	Body performing rotational free drop	NH
- L.K.	M Charles	HR
M TT K		LN
and the second second		FH
	- Andrew States	HA
_ = 1m		BS
$\theta = 2^{\circ}$	$\begin{array}{c} \alpha = 15^{\circ} \\ \beta = 5^{\circ} \end{array}$	
	p = 0	BH. BH
M = 100kg	M = 2kg	LH
V = 0.83m/s	R = 0.5m	HK
$(V = \sqrt{2 \cdot g \cdot L} \cdot \sin \theta = \sqrt{2 \times 9.8 \times 1 \times \sin 2^\circ} = 0.83 \text{m/s})$	H = 0.1m	HL/ HLE HL/ HLE
n = 10 cycle/min.	$\begin{array}{c} r = 0.3m \\ r = R \sqrt{3 \cdot q \cdot H} 0.5 \sqrt{3 \times 9.8 \times 0.1} \\ \end{array}$	
t = 23°C	$(V = \frac{R}{r} = \sqrt{\frac{3 \cdot g \cdot H}{2}} = \frac{0.5}{0.3} \sqrt{\frac{3 \times 9.8 \times 0.1}{2}} = 2.02 \text{m/s})$	HE
Rt = 5S	n = 50 cycle/min.	HC
	t = 20°C	HN
	Rt = 0.6S	HN
		HF
		HL
		HG
$E_1 = \frac{1}{2} \cdot M \cdot V^2 = \frac{1}{2} \times 100 \times 0.83^2 = 34.4J$	$E_1 = M \cdot g \cdot H = 2 \times 9.8 \times 0.1 = 1.96 J$	
		FH
		HB
		HD
S' = 50mm from Fig. 1	S' = 10mm from Fig. 1	HN
		HJ
		BH
		CK
$E_2 = M \cdot g \cdot S \cdot \sin \theta = 100 \times 9.8 \times 0.05 \times \sin 2^\circ = 1.71 J$	$E_2 = \frac{r}{R} \cdot M \cdot g \cdot S \cdot \cos\beta = \frac{r}{R} \times 2 \times 9.8 \times 0.01 \times \cos 5^{\circ} C = 0.11 J$	CK
$E = E_1 + E_2 = 34.4 + 1.71 = 36.1J$	$R = R^{-1} R^{$	СК
	E = E1 + E2 = 1.96 + 0.11 = 2.07J	СК
		СК
F ₂ 171	F ₂ 0.11	CK
$\frac{E_2}{E_1} = \frac{1.71}{34.4} = 0.05$	$\frac{E_2}{E_1} = \frac{0.11}{1.96} = 0.06$	CK
Select multiple orifice (FCK-H-5) temporally	Select multiple orifice (FCK-H-0.5) temporarily	
		CK -*-H
		CK
$E_2 = M \cdot g \cdot S \cdot \sin \theta = 100 \times 9.8 \times 0.03 \times \sin 2^\circ = 1.03 J$	$E_2 = \frac{r}{R} \cdot M \cdot g \cdot S \cdot \cos\beta = 0.11J$	CK
$E = E_1 + E_2 = 35.4J$		NCK SCK
	$E = E_1 + E_2 = 1.96 + 0.11 = 2.07J$	FJ
		FK
Et = 60·E·n = 60 × 35.4 × 10 = 21240J/h	$Et = 60 \cdot E \cdot n = 60 \times 2.07 \times 50 = 6210 J/h$	En
		Shock absorber
		sor
$Me = \frac{2E}{V^2} = \frac{2 \times 35.4}{0.83^2} = 102.7 \text{kg}$	$Me = \frac{2E}{V^2} = \frac{2 \times 2.07}{2.02^2} = 1.0 \text{kg}$	<pre>< ab</pre>
$V^2 = 0.83^2 = 102.7 \text{ kg}$	$V^2 = 2.02^2 = 1.0$ kg	
		ٽ
All of E, Et, Me, n, t and Rt are OK.	E, Me, n, t and Rt are OK.	
Determine FCK-H-5	However, recalculate with one size larger FCK-H-0.6, since	
	Et is overflow.	

RRC	Selection example 5	Selection example 6
GRC RV3*	Body falling slope down	Horizontal rotational colliding with torque
NHS		T
HR	- Completion	
LN FH100	$\frac{\sigma}{L = 0.45m}$	
HAP	$\theta = 5^{\circ}$	
BSA2 BHA/ BHG		
BHG LHA	M = 1.0kg	$J = 204.1 \text{kgm}^2$
LHAG	$V = 0.88 \text{m/s}$ $(V = \sqrt{2 \cdot \text{g} \cdot \text{L} \cdot \sin \theta} = \sqrt{2 \times 9.8 \times 0.45 \times \sin 5^{\circ}} = 0.88 \text{m/s})$	$\omega = 0.6$ rad/s R = 1.25m
HKP HLA/	n = 15 cycle/min.	n = 10 cycle/min.
HLA/ HLB HLAG/ HLBG	t = 23°C Rt = 2S	$T = 68.6 \text{N·m}$ $t = 20^{\circ}\text{C}$
HEP		Rt = 3s
HCP HMF		
HMFB		
HFP HLC	$= 1 M v^2 + 1 V A a V a a v^2 - 2 a a z z 1$	$E_1 = \frac{J \cdot \omega^2}{2} = \frac{204.1 \times 0.6^2}{2} = 36.7 J$
HGP	$E_1 = \frac{1}{2} \cdot M \cdot V^2 = \frac{1}{2} \times 1.0 \times 0.88^2 = 0.387J$	$E_1 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{36.73}{2}$
FH500		
HBL	S' = 5mm from Fig. 1	S' = 50mm from Fig. 1
HMD		
HJL BHE		
CKG	$E_2 = M \cdot g \cdot S \cdot \sin \theta = 1 \times 9.8 \times 0.005 \times \sin 5^{\circ} = 0.004 J$	$E_2 = \frac{T}{R} \cdot S = \frac{68.6}{1.25} \times 0.05 = 2.74J$
CK	E = E ₁ + E ₂ = 0.387 + 0.004 = 0.391J	$E = E_1 + E_2 = 36.7 + 2.74 = 39.44J$
CKA CKS		
CKF	$\frac{E_2}{E_1} = \frac{0.004}{0.387} = 0.01$	$\frac{E_2}{E_1} = \frac{2.74}{36.7} = 0.07$
CKJ CKL2	Select single hole orifice (FCK-L-0.15) temporally	V =ω·R = 0.6 × 1.25 = 0.75m/s
CKL2 -*-HC		Select multiple orifice (FCK-H-5) temporally
CKH2 CKLB2	$E_2 = M \cdot g \cdot S \cdot \sin \theta = 1 \times 9.8 \times 0.008 \times \sin 5^\circ = 0.007 J$ $E = E_1 + E_2 = 0.394 J$	$E_2 = \frac{T}{R} \cdot S = \frac{68.6}{1.25} \times 0.03 = 1.65J$
NCK/ SCK/FCK		E = E1 + E2 = 38.6J
FJ		
FK Ending	$Et = 60 \cdot E \cdot n = 60 \times 0.394 \times 15 = 354.6 J/h$	$Et = 60 \cdot E \cdot n = 60 \times 38.6 \times 10 = 23160 J/h$
	$Me = \frac{2E}{V^2} = \frac{2 \times 0.394}{0.88^2} = 1.02 kg$	$Me = \frac{2E}{V^2} = \frac{2 \times 38.6}{0.75^2} = 137.2 \text{ kg}$
	v~ 0.88~ ~	v ² U./5 ²
	All of E, Et, Me, n, t and Rt are OK.	E, Et, Me, n, t and Rt are OK.
	Determine FCK-L-0.15	Determine FCK-H-5.
