SRG3

Rodless type High precision guided rodless cylinder

ø12·ø16·ø20·ø25

Overview

High precision guided rodless cylinder with integrated linear gide with a bore size of \emptyset 12 to \emptyset 25. This is optimal for precision transfer of a small parts.

Features

Compact and precise Downsized by integrating ine axis high precision guide on the side of rodless cylinder. Downsizing of device is achieved.

Thin design like SRL3 CKD original flat rodless cylinder structure realizes ultra low table position. This enables thin design of devices. Also the design is based on SRL3 with same stroke length, making it easier to replace.

Common port

Common port (one end porting) and standard port (both ends porting) can be selected according to cylinder installation position. This contributes to downsizing of devices.

CONTENTS

Series variation	2084
Variation ans option selection table	2086
A Safety precautions	2087
Double acting(SRG3)	2090
Selection guide	2099
Technical data	2103

SCP*2 CMK2 CMA2 SCM SCG SCA2 SCS CKV2 CA/OV2 SSD CAT MDC2 MVC SMD2 MSD³ FC* STK ULK* JSK/M2 JSG JSC3 USSD USC JSB3 LMB STG STS L LCS LCG LCM LCT LCY STR2 UCA2 HCM HCA SRL3 SRG3 SRM3 SRT3 MRI 2 MRG2 SM-25 CAC4 UCAC2 RCC2 MFC SHC GLC Ending Rodless type High precision guided rodless cylinder

CKD

Series variation

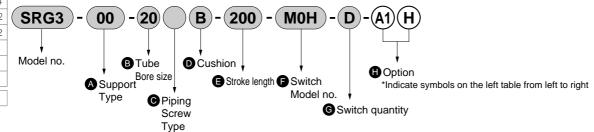
High precision guided Rodless cylinder SRG3 Series

SCP*2 CMK2 CMA2 SCM SCG SCA SCS CKV CA/O SSD CAT MDC MVC SMD MSE FC* STK ULK JSK/ JSG JSC USS USC JSB LMB STG STS LCS LCG LCM LCT LCY STR2 UCA2 HCM HCA SRL3 SRG3 SRM3 SRT3 MRL2 MRG2 SM-25 CAC4 UCAC2 RCC2 MFC SHC GLC Ending

SCA2 SCS CKV2																	Μοι	unting s	style		Cu	shion				Optio	n			
A/OV2 SD													Min		Max	Custom	Basic	Axial	Axial	No cu	Both :	R Side	L Side	Adjustable full	Adjustable f	Adjustable f	Adjustable	Table n		
AT MDC2 MVC	Variation	Model no.	Bore size			Sta	ndard	stroke	length ((mm)			ı. stroke		<. stroł	om strok	type	foot type	foot type	cushion	sides c	e cushio	e cushio	-stroke both	ull-stroke Rsi	ull-stroke Lside	e full-stroke	mounting	Switch	Page
SMD2 //SD*		JIS symbol	(mm)										e length		ke lenç	(D		pe	pe		cushio	lioned	ioned	sides with shc	de with shoc	de with shock) bracket re	thread	ich	æ
C*		olo symbol	(((((((((((((((((((((((((((((((((((((((T .		ngth	length					ned			ock absorber	k absorber	k absorber	etrofitting	size up		
JLK* SK/M2 SG				200	300	400	500	600	700	800	900	1000	(mm)	(n	nm)	(mm)	00	LB	LB1	Ν	В	R	L	А	A1	A2	A3	Н		
	Double acting	SRG3	ø12	•	•	•									450		•	•	•	•	•	•	•	O	O	0	O	0		
SB3 .MB			ø16, 20	•	•	•	•	•	•	•			1	8	300	1	•	•	•	•	•	•	•	O	0	0	0	0	O	2090
STG STS L .CS .CG			ø25	•	•	•	•	•	•	•	•	•			000		•	•	•	•	•	•	•	0	0	0	0			

•: Standard : Option : Not available

SCP*2 CMK2 CMA2 SCM SCG SCA2 SCS CKV2 CA/OV2 SSD CAT MDC2 MVC SMD2 MSD* FC* STK ULK* JSK/M2 JSG JSC3 USSD USC JSB3 LMB STG STS L LCS LCG LCM LCT LCY STR2 UCA2 HCM HCA SRL3 SRG3 SRM3 SRT3 MRL2 MRG2 SM-25 CAC4 UCAC2 RCC2 MFC SHC GLC Ending Rodless type High precision guided rodless cylinder


Variation and option combination table

SCP*2 CMK2 CMA2 SCM SCG SCA2 SCS CKV2 CA/OV SSD CAT MDC2 MVC SMD2 MSD* FC* STK ULK* JSK/M2 JSG JSC3 USSE USC JSB3 LMB STG STS L LCS LCG LCM LCT LCY STR2 UCA2 HCM HCA SRL3 SRG SRM SRT3 MRL2 MRG2 SM-25 CAC4 UCAC2 RCC2 MFC SHC GLC Ending

- : Option
- ○: Available (custom order)
- \triangle : Available depending on conditions (consult with CKD)
- X : Not available

2			Code	Variation	Pip Sci	ing œw	0	ptio	on							
/2				Double acting	NPT	G	Adjustable	Adjustable stroke	Adjustable stroke H side	For mounting adjustable stroke bracket afterwards	Table mounting thread	Port and cushion needle position specification				
2				ole a			stab	stab	stab	unting	m	nd cu:				
;2				actir				e s	le s) adju	nnc	shior	shior	shior	shior	shior
2	Code			d DL			stroke	stro	strol	stable	ting	nee	nee	nee	nee	nee
)*	de			basic				(e R	ê H	e stro	thr	dle p				
_				c type			oth	? side	1 sic	ke bra	ead	ositio	ositio	ositio	ositio	ositio
k				e			both sides	ð	e	acket	siz	in spe				
/12							es			afterv	size up	ecifica	ecific	ecifica	ecifica	ecific
										vards		ation	ation	ation	ation	ation
3 D			Symbol	No	Ν	G	А	A1	A2	A3	Н	R	В	Т	D	S
	Variation	Double acting basic type	Blank	\bigwedge	\bigcirc	\bigcirc	\bigcirc	\odot	\odot	\bigcirc	\odot	\bigcirc	\odot	\bigcirc	\bigcirc	\odot
3	Port thread	NPT	Ν		\sum	Х	0	0	0	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
_	nread	G	G			\searrow	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
L		Adjustable stroke both sides	А				\searrow	Х	Х	Х	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
_		Adjustable stroke R side	A1					\square	X	Х	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		Adjustable stroke H side	A2						\searrow	Х	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		For mounting adjustable stroke bracket afterwards	A3							\setminus	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Opt	Table mounting thread size up	Н								\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	Option	Port and cushion needle position specification	R									$\overline{\ }$	Х	Х	Х	Х
1	-	Port and cushion needle position specification	В										\smallsetminus	Х	Х	Х
2		Port and cushion needle position specification	Т											\setminus	Х	Х
3 3		Port and cushion needle position specification	D												$\overline{\ }$	Х
3		Port and cushion needle position specification	S													\square
3	Accessory	Cylinder switch	Listed on another section	\bigcirc	0	0	\bigcirc	0	O	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc

<Example of model number>

Model no.: High precision guided rodless cylinder

- A Mounting style : Basic type
- Bore size : ø20mm Port thread type : Rc thread
- DCushion : Both sides cushioned
- Stroke length : 200mm
- Switch model no. : Reed MOH switch and lead wire 1m
- GSwitch quantity : 2
 - : Adjustable full-stroke both sides, with shock absorber or table mounting thread size up

Option

Pneumatic components

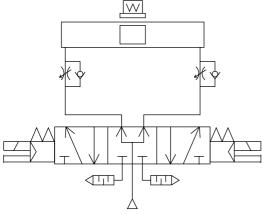
Safety precautions

Always read this section before starting use. Refer to Intro 71 for the cylinder, and to Intro 78 for the cylinder switch.

Individual precautions: rodless cylinder with high precision guide SRG3 Series

Installation & Adjustment

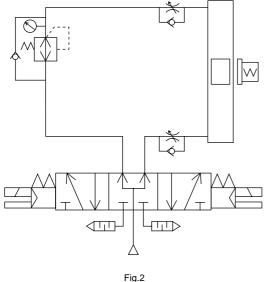
1. Common


Please watch out when designing intermediate stop circuit.

With a slit rodless cylinder such as the SRL3, some air leaks due to the structure, so braking cannot be controlled with the all ports closed 3-position valve, and it may not be possible to hold the table stop position. Use a double sided pressurized control circuit having a P/A/B connection 3-position valve. If air pressure drops once and is then pressurized again unenergized, the table may move and the origin deviate.

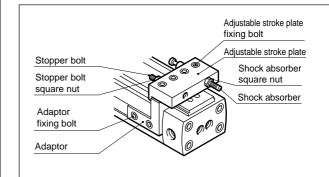
Basic circuit diagram

Horizontal load


If piping is as shown in Fig. 1, equal pressure is applied on both sides of the piston when stopped, and the table does not pop out when restarting.

Vertical load

If a vertical load is applied as shown in Fig. 2, the table will move in the direction of the load. Thus, install a regulator with check valve to reduce the thrust in the load direction and balance the load.


Fig.1

- With the slit rodless cylinder, such as the SRL3, external air leaks at a level that does not affect speed control.
- Do not use for applications that require constant pressurization to only one side such as a balancer.

WARNING

How to adjust stroke adjustment unit

(1) Moving the stroke adjustment unit

Loosening adaptor fixing bolt and adjustable stroke end plate fixing bolt allows to move the adjustable stroke unit.

(2) Fixing the stroke adjustment unit

After moving adjustable stroke unit to the specified position, fix the adaptor fixing bolt and the adjustable stroke end plate fixing bolt using values in Table 1. If tightened at a lower value, the stroke adjustment unit may deviate.

Table 1 Tightening torque for adapter fixing bolt and stroke adjustment plate fixing bolt

Tightening torque Model	Adaptor fixing bolt (N⋅m)	Adjustable stroke plate Fixing bolt (N⋅m)
SRG3-12/16	1.0 to 1.2	0.5 to 0.7
SRG3-20	2.5 to 2.7	0.5 10 0.7
SRG3-25	5.2 to 5.6	2.5 to 2.7

(3) Stroke adjustment using stopper bolt

With 12 to 20mm bore, clearance between the table and stroke adjustment plate is small, and fingers may be pinched during adjustment. The stroke must basically be adjusted by moving the stroke adjustment unit.

Loosen the stopper bolt lock nut, turn the stopper bolt, and adjust the stroke.

After adjusting the stroke, tighten and fix the stopper bolt lock nut using values in Table 2.

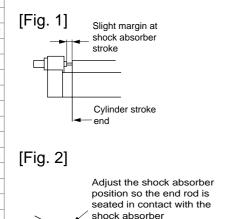
Table 2 Tightening torque of stopper bolt fixing nut, shock absorber fixing nut

Tightening torque Model	Square nut (N⋅m)	Square nut (N⋅m)
SRG3-12/16	1.1 to 1.2	1.3 to 1.8
SRG3-20	2.5 to 2.7	2.9 to 3.9
SRG3-25	8.8 to 9.5	4.5 to 6.0

(4) Adjusting shock absorber

Standard shock absorber

SRG3 Series


Absorbed energy of shock absorber is adjusted by changing operational stroke length of shock absorber.

Adjust the shock absorber working stroke by loosening the shock absorber lock nut and turning the shock absorber. After adjusting, tighten the shock absorber fixing nut with the tightening torque shown below.

(5)Precautions upon use

The shock absorber absorbs rated energy with the rated stroke. When the product is shipped, the shock absorber is installed with a slight margin to the stroke at the cylinder stroke limit.

Absorbed energy is smaller than allowable energy absorption for the individual shock absorber, so if rated absorbed energy is required, adjust so the full stroke for the shock absorber is used.

Cylinder stroke

end

Note: Explanation of shock absorber with

adjustable full stroke.

The absorption energy differs according to the collision speed, so if the collision speed is 1000mm/s, make sure that half of the maximum absorption energy shown in Table 3 is not exceeded.

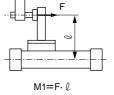
Table 3 Adjustable	e full-stroke shock absorber	specifications (initial setpoint)
Туре	Absorbed energy (J)	Valid mm stroke (mm)
SRG3-12/16	2.4	5.5
SRG3-20	5.7	7
SRG3-25	10	8

Avoid electrical welding after installing the rodless cylinder.

If the current flows into the cylinder and generates sparks between the dust-proof belt and cylinder tube, the dust-proof belt may be damaged.

- If a unit with excessive inertia, etc., is moved, the cylinder may be damaged or malfunctioning may occur. Use only within the allowable range.
- Do not apply shock or excessive moment on the table.
- Align before connecting to an load with an external guide mechanism.

- Carefully consider connection (floating) so deviation is absorbed. The longer the stroke, the greater the shaft center may deviate.
- Check that moment, including inertia generated when moving or stopping the load, does not exceed the allowable load, or damage may result. If this value is exceeded, the product is damaged.

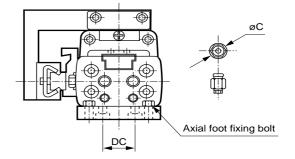

(When the overhang is large)

If overhang is large and the cylinder is stopped at both ends with the piston, the bending moment functions due to load inertia even within internal cushion energy absorption.

If kinetic energy is large and an external cushion, etc., is used, try contact with the work-piece center of gravity as much as possible.

(When using an external stopper)

When selecting an external stopper, consider the bending moment generated by cylinder thrust.


F: Cylinder thrust ℓ : Distance from cylinder center

Use of common port piping

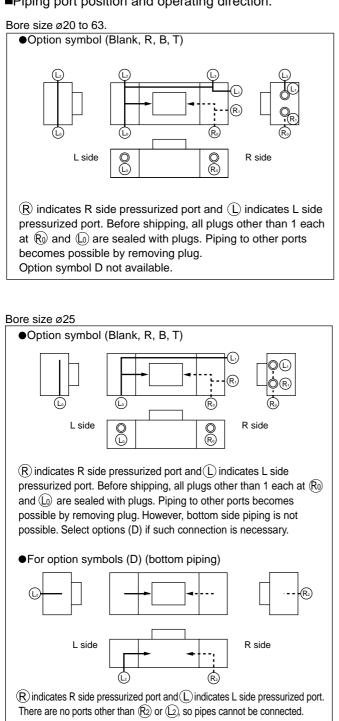
 Applicable fittings for common port (option symbol R and T) are limited. Refer to Table 4.

Table 4

Mounting style	Applicable joint outer diameter øC								
Bore size (mm)	00	LB	LB1						
ø12	11 or less		11 or less						
ø16	12 or less	Common port piping	12 or less						
ø20	16 or less	not available	16 or less						
ø25	26 or less		26 or less						

When mounting style is axial foot type (LB1), and option symbol R or T, the joint interferes with the axial foot fixing bolt. Fix the cylinder main body with (axial foot fixing bolt) before pipe joint installation.

(The fitting will interfere with the axial foot fixing bolt if assembled before it)


CKD

2088

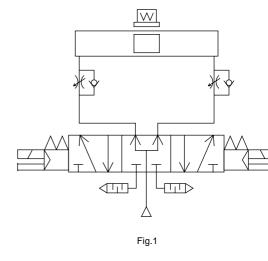
Series

Specific precautions

Piping port position and operating direction.

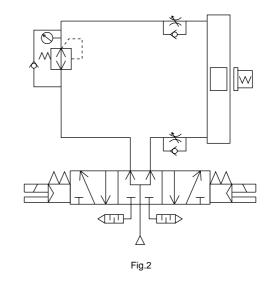
Do not make nicks and scratches that impair flatness of the main body (tube) fixing surface and end plate surface.

ACAUTION


Please watch out when designing intermediate stop circuit. With a slit rodless cylinder such as the SRL3, some air leaks due to the structure, so braking cannot be controlled with the all ports closed 3-position valve, and it may not be possible to hold the table stop position. Therefore, use a double sided pressurized control circuit having a P/A/B connection 3-position valve.

If air pressure drops once and is then pressurized again deenergized, the table may move and the origin deviate.

Basic circuit diagram

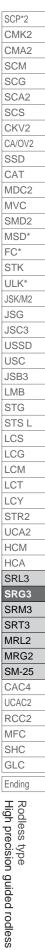

Horizontal load

If piping is as shown in Fig. 1, equal pressure is applied on both sides of the piston when stopped, and the table does not pop out when restarting.

Vertical load

If a vertical load is applied as shown in Fig. 2, the table will move in the direction of the load. Thus, install a regulator with check valve to reduce the thrust in the load direction and balance the load.

Do not use in a place where coolant, coolant fluid or oil mist, etc., could come in direct contact with the cylinder.


Always protect the cylinder with a cover if it needs to be installed in such environment.

Do not use in a place where foreign matter such as swarf, powder dust, dust or spatter come in contact or are suspended in the environment.

If unavoidable because of the cylinder installation position, always provide protection with a cover, etc. Consult with CKD when using in such environment.

The CKD shock absorber is treated as a consumable

Replace the shock absorber if energy absorption performance drops or if movement is no longer smooth.

cylinder

Rodless cylinder with high precision guide

SRG3 Series

●Bore size: ø12, ø16, ø20, ø25

CKV2 Specifications

SCS

CAC4

CA/OV2	Descriptions		SRG3 (standard type/with switch)										
SSD	Bore size	ø12	ø16	ø20	ø25								
CAT	Actuation		Double acting										
MDC2	Working fluid		Compressed air										
MVC	Max. working pressure MPa		0.7										
SMD2	Min. working pressure MPa		0.2 0.1										
MSD*	Withstanding pressure MPa		1.05										
FC*	Ambient temperature °C		5 to 60										
STK	Port size	Μ			1/8								
ULK*	Stroke tolerance mm		+ 2										
JSK/M2	Working piston speed mm/s		50 to 100) (Note 1)									
JSG	Repeatability mm		± 0.05 (if it has s	, ,									
JSC3	Cushion		± 0.05 (ii it fias s	,									
USSD	Cushion	/			<u> </u>								
USC	Lubrication	Not required Use the turbine oil Class 1 ISOVG32 if lubricated.											
JSB3				,	· · · ·								
LMB	Note 1: Piston speed used v	with common port pip	ing differs with the s	troke. Contact CKD f	for details.								

STG Allowable energy absorption

STS L		- 37 1								
	Bore size	Cush	ioned	No cushion	With shock absorber (initial setpoint)					
LCS	(mm)	Allowable energy absorption (J)	Cushion stroke length (mm)	Allowable energy absorption (J)	Absorbed energy (J)	Valid stroke length (mm)				
LCG	ø12	0.03	14.5	0.003	2.4	5.5				
LCM	ø16	0.22	19.2	0.007	2.4	5.5				
LCT	ø20	0.59	22.2	0.010	5.7	7				
LCY	ø25	1.40	20.9	0.015	10	9				
STR2										

UCA2 Stroke length

	5			
HCM	Bore size (mm)	Standard stroke length (mm)	Max. stroke length (mm)	Min. stroke length (mm)
HCA				
SRL3	ø12	200, 300, 400	450	
SRG3	ø16	200, 300, 400, 500	202	
SRM3	ø20	600, 700, 800	800	1
SRT3		200, 300, 400		
MRL2	ø25	500, 600, 700	1000	
MRG2	920	800, 900, 1000	1000	
SM-25		, ,	l ediate stroke can be manuf:	ctured in 1 mm increments

** The intermediate stroke can be manufactured in 1 mm increments.

M type switch quantity and min. stroke length (mm)

UCAC2													
RCC2	Switch quantity	1		2		3		4		5			6
MFC	Switch model no.	M*V	M*H	M*V	M*H	M*V	M*H	M*V	M*H	M*V	M*H	M*V	M*H
SHC	Bore size (mm)							IVI V		IVI V			
GLC	ø12	10	10	30	45 (70)	60	90 (120)	90	135 (170)	120	180 (220)	150	225 (270)
Ending	ø16	10	10	30	45 (70)	60	90 (120)	90	135 (170)	120	180 (220)	150	225 (270)
Linding	ø20	10	10	30	45 (70)	60	90 (120)	90	135 (170)	120	180 (220)	150	225 (270)
	ø25	10	10	30	45 (70)	60	90 (120)	90	135 (170)	120	180 (220)	150	225 (270)

Note: The minimal stroke for full stroke adjustment models with switches are shown in ().

T type switch quantity and min. stroke length (mm)

Switch quantity	1		2		3		4		5		6	
Switch model no.		T *11	- +\/	- +11	- +\/	T +11		- +11	T +\/	T +11	T +\/	T +11
Bore size (mm)	T*V	T*H	T*V	T*H	T*V	T*H	T*V	T*H	T*V	T*H	T*V	T*H
ø12	5	5	45	50 (70)	85	100 (120)	125	150 (170)	165	200 (220)	205	250 (270)
ø16	5	5	45	50 (70)	85	100 (120)	125	150 (170)	165	200 (220)	205	250 (270)
ø20	5	5	45	50 (70)	85	100 (120)	125	150 (170)	165	200 (220)	205	250 (270)
ø25	10	10	45	50 (70)	85	100 (120)	125	150 (170)	165	200 (220)	205	250 (270)

Note: The minimal stroke for full stroke adjustment models with switches are shown in ().

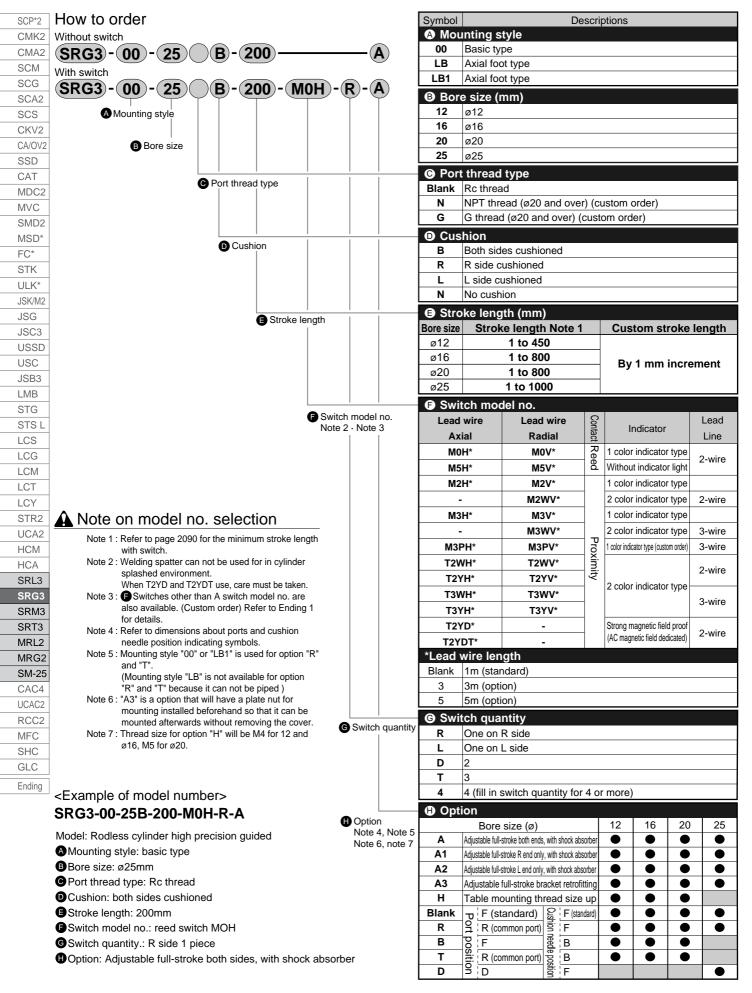
Specifications

Switch specifications (M type switch) ●1 Color/2 color indicator

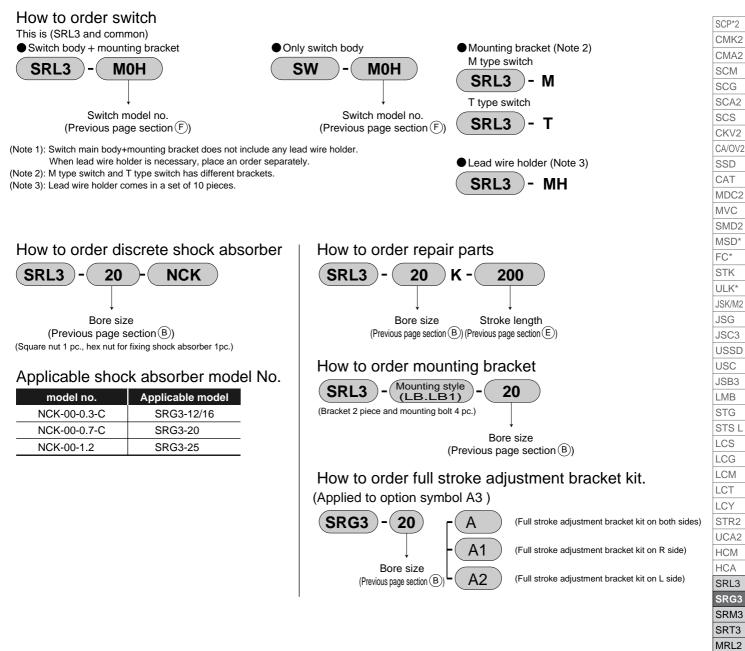
Descriptions	Proximit	ty 2 wire		Proximity 3 wire	
Descriptions	M2V and M2H	M2WV (2 color indicator type)	M3H and M3V	M3PH/M3PV (custom order)	M3WV
Applications	PL	C	PLC, re	lay, IC circuit or small solenoi	id valve
Output method	-		NPN output	PNP output	NPN output
Power voltage	-		4.5 to 2	28 VDC	10 to 28 VDC
Load voltage	10 to 3	0 VDC		30 VDC or less	
Load current	5 to 2	20mA	200mA or less	100mA or less	150mA or less
Light	LED (ON lighting)	Red/green LED (ON lighting)	LED (ON lighting)	Yellow LED (ON lighting)	Red/green LED (ON lighting)
Leakage current	1mA c	or less	10µA or less	0.05mA or less	10µA or less
Descriptions			Reed 2 wire		
Descriptions	M0V ar	nd M0H	M5V	/ and M5H	
Applications	PLC,	relay	PLC, relay, IC circuit (w/o lamp), serial connection	
Power voltage	-			-	
Load voltage	12/24 VDC	110 VAC	24 VDC or less	110 VAC or less	
Load current	5 to 50mA	7 to 20mA	50mA or less	20mA or less	
Light	LED (ON	lighting)	Without	indicator light	
Leakage current			0mA		

Note 1: For MO* switch, if load current is within 7 to 20mA, this switch can be used with 24 VAC and 48 VAC. Note 2: Refer to Ending 1 for other switch specifications.

Switch specifications (T type switch) 2 Color indicator type


Descriptions	Proximit	y 2 wire	Proximit	y 3 wire
Descriptions	T2YH/T2YV	T2WH/T2WV	T3YH/T3YV	T3WH/T3WV
Applications	PL	C	PLC,	relay
Output method	-		NPN output	NPN output
Power voltage	-	-	10 to 28	3 VDC
Load voltage	10 to 30 VDC	24 VDC ± 10%	30 VDC	or less
Load current	5 to 20m/	A (Note 1)	50mA c	or less
	Red/green	Red/green	Red/green	Red/green
Light	LED	LED	LED	LED
	(ON lighting)	(ON lighting)	(ON lighting)	(ON lighting)
Leakage current	1mA c	or less	10µA o	or less

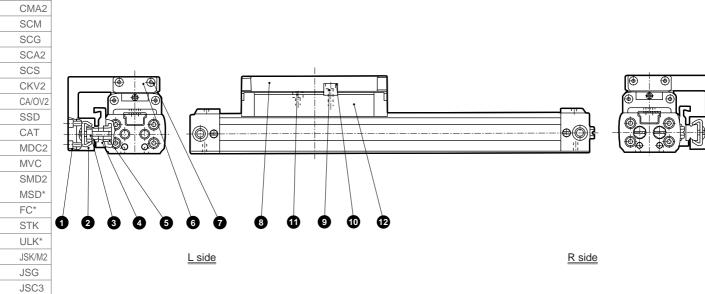
Strong magnetic field proof


Descriptions	Proximity 2 wire
Descriptions	T2YD and T2YDT
Applications	PLC
Light	Red/green LED (ON lighting)
Load voltage	24 VDC ± 10%
Load current	5 to 20mA
Internal voltage drop	6V or less
Leakage current	1.0mA or less

Cylinder weight

Cylinder weight					Unit: kg
	Weight w	hen stro	ke lengt	h is 0mm	Additional weight
Bore size (mm)	Basic type	Foot	type	Weight per switch	per stroke
	(00)	(LB)	(LB1)	(Including bracket)	length = 100mm
ø12	0.46	0.25	0.26		0.23
ø16	0.61	0.33	0.35	0.02	0.28
ø20	0.96	0.54	0.58	0.02	0.33
ø25	1.73	1.1	1.1		0.52

How to order


MRG2 SM-25 CAC4 UCAC2 RCC2 MFC

SCP*2 CMK2

USSD USC JSB3 LMB

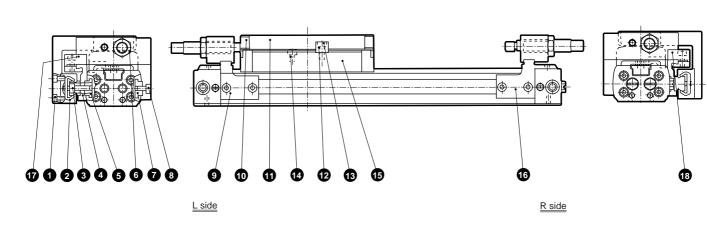
HCM

Internal structure and parts list

STG								
STS L	No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
LCS	1	Hexagon socket head cap bolt	Alloy steel	Blackening	7	Hexagon socket head cap bolt	Alloy steel	Galvanizing
LCG	2	High precision guide	Stainless steel		8	Connection plate	Aluminum alloy	Alumite
LCM	3	Hexagon socket head cap bolt	Alloy steel	Blackening	9	Кеу	Steel	Blackening
CT	4	Guide holder	Aluminum alloy	Alumite	10	Hexagon socket head cap bolt	Alloy steel	Blackening
CY	5	Square nut (B)	Steel	Blackening	11	Hexagon socket head cap bolt	Alloy steel	Galvanizing
STR2	6	Stopper plate	Steel	Galvanizing	12	Table	Aluminum alloy	Alumite
UCA2								

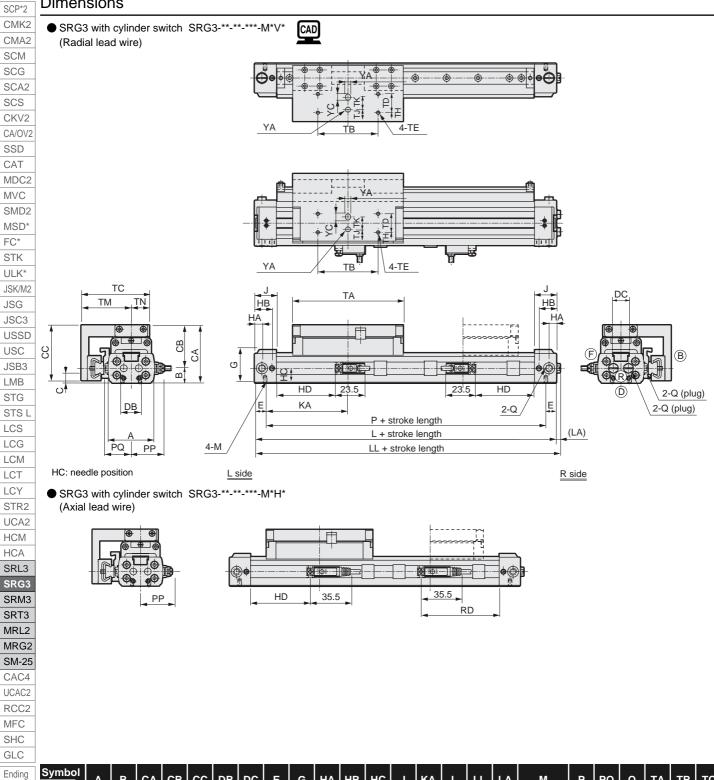
Repair parts list

	riopan parte	, not	
HCA	Bore size		
SRL3		Kit No.	Repair parts number
SRG3	(mm)		
SRM3	ø12	SRL3-12K-*	
SRT3			
MRL2	ø16	SRL3-16K-*	Repair parts of rodless
MRG2			cylinders are same as
SM-25	ø20	SRL3-20K-*	SRL3 Series.
CAC4			Refer to page 2005.
UCAC2	ø25	SRL3-25K-*	
RCC2			


MFC Note 1: Specify the kit no. when placing an order Specify stroke length for "*".

GLC Ending

Internal structure and parts list


Internal structure and parts list

Adjustable full-stroke with shock absorber

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Hexagon socket head cap bolt	Alloy steel	Blackening	10	Stopper plate	Steel	Galvanizing
2	High precision guide	Stainless steel		11	Connection plate	Aluminum alloy	Alumite
3	Hexagon socket head cap bolt	Alloy steel	Blackening	12	Кеу	Steel	Blackening
4	Guide holder	Aluminum alloy	Alumite	13	Hexagon socket head cap bolt	Alloy steel	Blackening
5	Square nut (B)	Steel	Blackening	14	Hexagon socket head cap bolt	Alloy steel	Galvanizing
6	Square nut	Steel	Galvanizing	15	Table	Aluminum alloy	Alumite
7	Square nut	Alloy steel	Blackening	16	Adaptor (L)	Steel	Galvanizing
8	Hexagon socket head cap bolt	Alloy steel	Galvanizing	17	Adaptor (LG)	Steel	Galvanizing
9	Adaptor (R)	Steel	Galvanizing	18	Adaptor (RG)	Steel	Galvanizing

Symbol Bore size (mm)	Δ	в	СА	СВ	сс	DB	DC	Е	G	НА	ΗВ	нс	J	KA	L	LL	LA	М	Р	PQ	Q	ТА	тв	тс
ø12	33	10.5	43	32.5	40.5	10	11	8.5	24	6	14	10.5	17.5	59.5	136	139	3	M3 depth 5	119	19	M5	81	42	49
ø16	37	12	47	35	45	14	12	8.5	27	6	14	12	17.5	66	149	152	3	M3 depth 5	132	21	M5	88	48	54.5
ø20	44	14	54	40	50	16	16	10.5	31	8.5	18.5	14	22	74	169	171.5	2.5	M4 depth 6.5	148	24.5	Rc1/8	100	60	61.5
ø25	53	17	67	50	63.5	20	26	14	40.5	7.5	20	18.9	24	81	190	192	2	M6 depth 9	162	-	Rc1/8	122	70	80

Note: Also refer to the right table.

Double acting

SCP*2 CMK2

CMA2 SCM SCG SCA2

SCS

CKV2

CA/OV2

SSD

CAT

MDC2 MVC

SMD2 MSD* FC*

STK ULK* JSK/M2 JSG JSC3

USSD USC

JSB3 LMB

STG STS L

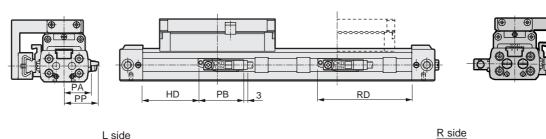
LCS

LCG LCM LCT

LCY STR2 UCA2 HCM HCA SRL3

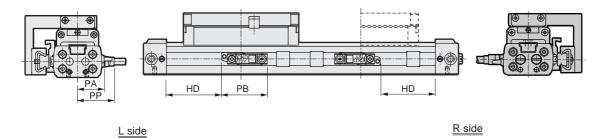
SRG3

SRM3 SRT3


MRL2

MRG2 SM-25

CAC4 UCAC2 RCC2


Dimensions

• SRG3-**-**-T*H with cylinder switch (T*W, T*Y or T2YD)

<u>L side</u>

SRG3-**-**-T*V with cylinder switch (T*W and T*Y)

• SRG3-LB-**-***with foot bracket

L side

R side

Symbol											With f	oot bra	cket (LE	3)				MFC
Bore size (mm)	TD	TE	Т	1 T	JT	κI	ГМ	TN	YA	YC	SA	SB	TF	U	v	w	x	SHC GLC
ø12	13	M3 dept	h5 6.	5 8	3 1	0	36	13 4‡	8:82 depth 4	5	32	24	8	6	4	148	3.4	Endin
ø16	15	M3 dept	h6 7	9.	5 1	0	40 1	4.5 4‡	$\stackrel{0.07}{\scriptstyle 0.02}$ depth 4	5	35	26	8	6	4	161	3.4	тл
ø20	18	M4 dept	h6 8.	5 1	0 1	5	44 1	7.5 6‡	8:82 depth 6	7	43	33	10	6	6	181	4.5	Rodless High pre
ø25	20	M5 dept	h8 1:	2 14	.5 1	5	58	22 6‡	8:82 depth 6	7	52	20	12	9	11	208	7	less 1 pre
																		cisi
Symbol	With	switch HD			RD				PB					PP				type cision
Symbol Bore size (mm)	With s		T*W	M*	RD T*Y*	T*W	PA	T*Y*	PB T2YD	T*W*	M*V	M*H	T*YV	PP T*YH	T2YD	T*WV	T*WH	type cision
		HD	T*W 32	M* 60.5		T*W 69	- PA 24.3	T * Y * 35		T*W* 33.5	M*V 24.5	M*H 24.5	T*YV 26		T2YD 28.4	T*WV 20.7	T*WH 17.2	type cision guided
Bore size (mm)	M*	HD T*Y*			T*Y*	1			T2YD					T*YH			-	type cision guided
Bore size (mm) ø12	M* 40.5	HD T*Y* 36	32	60.5	T*Y* 65	69	24.3	35	T2YD 34	33.5	24.5	24.5	26	T*YH 23	28.4	20.7	17.2	type cision guided rodless
Bore size (mm) ø12 ø16	M* 40.5 47	HD T*Y* 36 42	32 38	60.5 67	T*Y * 65 72	69 76	24.3 26.3	35 35	T2YD 34 34	33.5 33.5	24.5 26.5	24.5 26.5	26 28	T*YH 23 25	28.4 30.4	20.7 22.7	17.2 19.2	type cision guided

Symbol	With s	switch															
Bore size (mm)		HD			RD		PA		PB					PP			
Bore Size (min)	M*	T*Y*	T*W	M*	T*Y*	T*W	PA	T*Y*	T2YD	T*W*	M*V	M*H	T*YV	T*YH	T2YD	T*WV	T*WH
ø12	40.5	36	32	60.5	65	69	24.3	35	34	33.5	24.5	24.5	26	23	28.4	20.7	17.2
ø16	47	42	38	67	72	76	26.3	35	34	33.5	26.5	26.5	28	25	30.4	22.7	19.2
ø20	52.5	48	44	72.5	77	81	29.3	35	34	33.5	29.5	29.5	31	28	33.4	25.7	22.2
ø25	60	56	52	82	86	90	34.3	35	34	33.5	34.5	34.5	36	33	38.4	30.7	27.2

Dimensions

SCP*2 CMK2

CMA2 SCM SCG SCA2 SCS CKV2

CA/OV2 SSD

CAT

MDC2 MVC

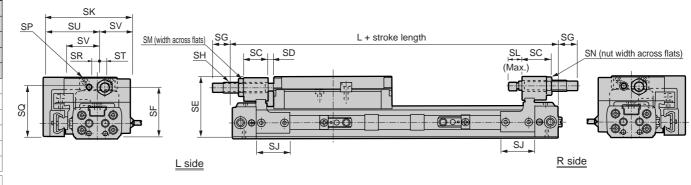

SMD2

MSD* FC* STK

ULK* JSK/M2 JSG

SRG3-LB1-**-*** with foot bracket

CAD



<u>L side</u>

Syn	nbol	With foot br	acket (LB1)								
Bore (mn		Q	SA	SB	TG	ΤY	CA	U	v	w	x
ø	12	M5	32	24	6	49	43	6	4	148	3.4
ø	16	M5	35	26	6	53	47	6	4	161	3.4
ø	20	Rc1/8	43	33	8	62	54	6	6	181	4.5
ø	25	Rc1/8	50	20	10	77	67	9	11	208	7

CAD **Dimensions: With option**

Adjustable full-stroke with shock absorber (SRG3)

Symbol	~~	e D	<u>е</u> г	<u>е</u> г		SG		S		~ 1	ev.	0	CM.	CN	en	60	e D	ст	e11	sv
Bore size (mm)	SC	SD	SE	SF	МАХ	MIN	Adjusting range	Outer diameter thread	Maximum energy absorption (J)	SJ	SK	SL	SM	SN	SP	SQ	SR	ST	SU	50
ø12	19.5	2.5	42	35	17.5	7.5	10	M8 x 0.75	3	25	58.5	8.5	12	7	M4	35.5	6	3	36	22.5
ø16	18	4	46	39	14.5	4.5	10	M8 x 0.75	3	25	64.5	10	12	7	M4	40	6	4	40	24.5
ø20	22.5	3.5	53	45	14.5	4.5	10	M10 x 1.0	7	39	72.5	11.5	14	8	M5	48	8	5	44	28.5
ø25	20	2.5	65.5	54.5	14.5	4.5	10	M12 x 1.0	12	50	96.5	11.5	17	10	M6	56	12	10	58	38.5

Selection guide

SCP*2

CMK2

CMA2 SCM

SCG

SCA2

SCS

CKV2

CA/OV2

SSD

CAT

MDC2

MVC

SMD2

MSD³

FC* STK

ULK'

JSK/M2 JSG

JSC3

USSD

USC

JSB3

LMB

STG STS L

LCS LCG

LCM

LCT LCY

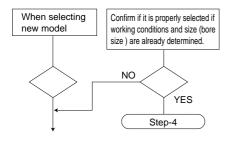
STR2

UCA2

HCM HCA

SRL3

SRG3 SRM3


SRT3

MRL2

SRG3 Series selection guide

Selecting conditions are different from standard cylinders. Use the selection guide to select the appropriate model.

1 Step-1

2 Step-2 Working conditions confirmation

- 1. Working pressure (P) (MPa)
- 2. Load weight (M) (kg)
- 3. Load (FL) (N)
- 4. Mounting direction
- 5. Stroke length (L) (mm)
- 6. Moving time (t) (s)
- 7. Operation speed (V) (m/s)

Cylinder average operation speed V formula

$$V = \frac{L}{t} \times \frac{1}{1000} (m/s)$$

(Load weight)

The value shows (Load weight + jig weight)

(Mounting direction)

 Operation direction
 Horizontal, vertical-up or vertical-down

 Mounting direction
 Table upward, table downward

3 Step-3 Roughly selecting cylinder size

• When finding the value according to theoretical thrust value on Table 1. Rough required thrust \geq load x 2

("X2" in "load X2" is a safety factor of 50%")

(Example) working pressure 0.5MPa

Load 5N *Necessary thrust is 5N x 2 = 10N.

ø12 is selected to meet theoretical thrust of more than 10N at working pressure 0.5MPa according to Table 1.

D = Ø12

(cylinder theoretical thrust)

Table 1 cylinder theoretical thrust

									, c	JIIII. IN		
	Bore size	Pressurized area	Working pressure MPa									
	(mm)	(mm²)	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7		
	ø12	138	-	-	28	41	55	69	83	97		
	ø16	216	-	-	43	65	86	108	130	151		
	ø20	315	-	-	63	94	126	157	189	220		
	ø25	542	-	54	108	163	217	271	325	380		

Note 1: Value in table 1 does not include thrust coefficient.

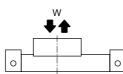
4 Calculation of step-4 load (W), each moment value

Calculate static load (W), and moment (M1, M2, M3) according to load mounting conditions of cylinder.

W = W (N) (W = M x 9.8)

M1 = F1 x 1 ℓ (N·m)

 $M2 = F2 \times 2 \ell \qquad (N \cdot m)$ $M3 = F3 \times 3 \ell \qquad (N \cdot m)$


 $M3 = F3 \times 3 \ell \quad (N \cdot m)$

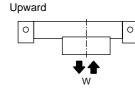
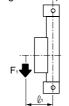
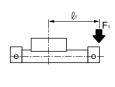
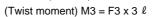
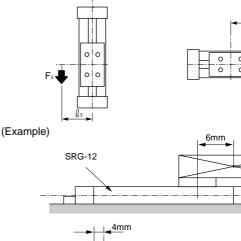

Substitute the loads applied on Fig.1 to the values of F1, F2, F3.

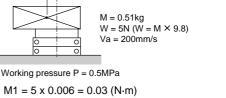
Fig. 1 Formula of each moment


(Vertical load)

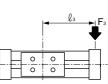

Downward

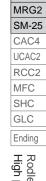

(Bending moment) $M1 = F1 \times 1 \ell$





(Radial moment) M2 = F2 x 2 l

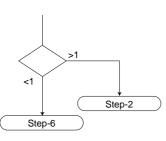




5N M1 = 0.03N·m M2 = 0.02N·m M3 =

M2 = 5 x 0.004 = 0.02 (N·m)

2099


Selection guide

5 Step-5 Confirming load and composite moment

Divide each load by the value on Table 2 to find moment ration, and confirm if the total is 1.0 or less. and confirm the total is 1.0 or less.
 Formula

 $\frac{W}{Wmax.} + \frac{M1}{M1max.} + \frac{M2}{M2max.} + \frac{M3}{M3max.} \leq 1.0$ If the total is larger than 1.0,

- 1. Reexamine load
- 2. Increase cylinder bore size

Table 2 Allowable load/moment

_	Descriptions Bore size (mm)	Vertical load W: N	Bending moment M1: N·m	Radial moment M2: N·m	Twist moment M3: N·m
	ø12	20	1	0.5	3
-	ø16	40	2.5	1	5.5
_	ø20	40	2.5	1	5.5
-	ø25	90	6.5	2.5	17

(example)

W = 5 (N), M = 0.03 (N·m), M2 = 0.02 (N·m), M3 = 0 (N·m) Cylinder size to be used.: Equivalent to ø12.

$$\frac{5}{20} + \frac{0.03}{1.0} + \frac{0.02}{0.5} + \frac{0}{3} = 0.32 \le 1.0$$

Since the total of load, moment ration is 1.0 or less, this is OK.

6 Step-6 Calculating required thrust

Calculate the required thrust (FN) according to each moment.

1. During horizontal operation

 $F_N = F_W + F_{M1} + F_{M2} + F_{M3} + F_L$ (N)

- $Fw = W \times 0.2 \quad (N)$
- $F_{M1} = M1 \times C1$ (N)
- $F_{M2} = M2 \times C2$ (N)
- F_{M3} = M3 x C3 (N)
- FL: load (N)

Frictional force coefficient caused by C1: moment M1 (table 3) Frictional force coefficient caused by C2: moment M2 (table 3) Frictional force coefficient caused by C3: moment M3 (table 3)

2. During vertical operation

FN = W + FM1 + FM3 + FL (N)

(Frictional force coefficient caused by each moment)

• Since friction force varies depending on the moment applied to cylinder, calculate frictional force per moment according to Table 3. Table 3. Friction force coefficient per moment

Table 5 Thought force coefficient per moment 1/m							
Bore size (mm)	C1	C2	C3				
ø12	8	27	8				
ø16	7	24	7				
ø20	6	21	6				
ø25	5	16	5				

(example)

W = 5 (N), M1 = 0.03 (N·m), M2 = 0.02 (N·m), M3 = 0 (N·m) Cylinder size to be used.: Equivalent to \emptyset 12.

$$F_{W} = 5 \times 0.2 = 1(N)$$

- F_{M2} = 0.02 x 27 = 0.54(N)
- Fмз = 0
- F∟ = 0
- $F_N = 1 + 0.24 + 0.54 + 0 + 0 = 1.78(N)$

Series

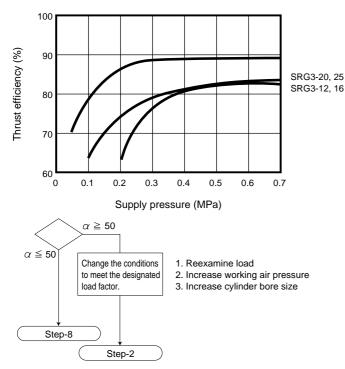
Selection guide

7 Step-7 load factor confirmation

• Load factor is determined according to stability of cylinder operation speed, safety factor and service life, etc.

• Formula of load factor (α)

 $\alpha = \frac{\text{Necessary thrust (FN)}}{2} \times 100 (\%)$ Cylinder thrust (F) $F = A \times P \times \frac{a}{100}$ (N)


A = pressurized area (mm^2) (refer to the table 1.)

• Cylinder theoretical value of table 1 as can be used as a value of A x P.

P: Working pressure (MPa)

a: thrust efficiency Use value in Fig. 2.

Tendency of thrust efficiency of fig.2 SRG3

(Range of appropriate load factor)

• Speed of piston varies on the load factor but the speed should be within the range shown on Table 4 for general use.

Table 4 (Adequate range of load factor-reference value)

Working pressure MPa	Load factor (%)
0.2 to 0.3	$\alpha \leq 40$
0.3 to 0.6	$\alpha \leq 50$
0.6 to 0.7	$\alpha \leq 60$

(Example) Cylinder size: Equivalent to ø12 Necessary thrust 1.78 (N)

Working pressure 0.5 (MPa)

$$\alpha = \frac{1.78}{138 \times 0.5 \times \frac{95}{100}} \times 100$$

= 2.7%
 $\alpha \le 50\%$, so it is OK.

8

8 Sten-8 cus	hion performance confirmation	0.00140					
	mon performance commandi						
Check if the kinetic e	nergy of actual load can be absorbed according	CMK2					
to cushion performar	ice of cylinder.	CMA2 SCM					
The allowable energy absorption of cylinder (E1) is the							
	of cylinder. For SRG, use the values on Table 5	SCG					
	i cylinder. For SKG, use the values of Table 5	00/12					
Formula of piston		SCS					
$E2 = \frac{1}{2} \times M$	x \/2 ()	CKV2					
2 2	x v2 (0)	CA/OV2					
m: Load	weight (kg)	SSD					
V: Cushi	on entry speed of piston (m/s)	CAT					
	L α	MDC2 MVC					
V =	t 100	SMD2					
	L: Stroke (m)	MSD*					
	()	FC*					
t: operation time (s)							
α : load factor (%)							
E1 <e2< td=""></e2<>							
\langle		JSG JSC3					
E1>E2	1. Place an shock absorber	USSD					
	externally.	USC					
	2. Lower operating speed.	JSB3					
(Ste	<u>p-9</u>	LMB					
	Step-8	STG					
		STS L					
		LCS					
(Cylinder allowable er	ergy absorption)	LCG					
For cylinder cushion me	chanism, value of kinetic energy absorbing performance	LCM					
varies depending on cylin	der bore size. For SRG3, refer to the value on Table 5	LCT					
5		LCY					
		STR2					
Table 5 Allowable energy absorption of SRG3 (E1)							
		HCM					
Bore size (mm)	Allowable energy absorption (J)	HCA					
(11111)	(0)	SRI 3					

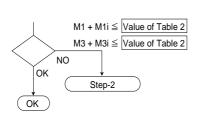
Bore size (mm)	Allowable energy absorption (J)
ø12	0.03
ø16	0.22
ø20	0.59
ø25	1.40

9 Step-9 Confirming inertia load

Check if the force applied to load generated by piston operation is within the range of cylinder faculty.

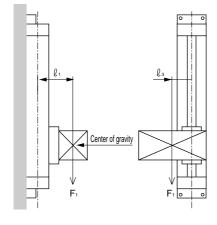
- (1) Calculate inertia force (F1) from cushion entry speed (V) and inertia coefficient of SRG3 shown on table 3.
 - $F_1 = 10 \times M \times G(N)$
 - m: Load weight (kg)
 - G: inertia force coefficient

(2) Find bending moment (M1i) and twist moment (M3i) according to inertia force (F1). (M3i) is asked.

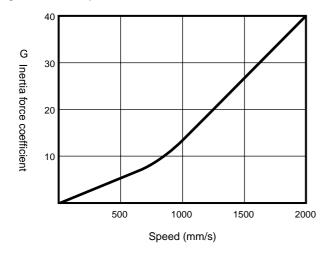

CKD

M1i = F1 x ℓ 1 M3i = F1 x *l*3

Selection guide


SCP*2 CMK2 CMA2 SCM SCG SCA2 SCS CKV2 CA/OV2 SSD CAT MDC2 MVC SMD2 MSD* FC* STK ULK* JSK/M2 JSG JSC3 USSD USC JSB3 LMB STG STS L LCS LCG LCM LCT LCY STR2 UCA2 HCM HCA SRL3 SRG3 SRM3 SRT3 MRL2 MRG2 SM-25 CAC4 UCAC2 RCC2 MFC SHC GLC Ending

(3) Add static load moment (M1 and M3) to inertia load moment (M1i and M3i). Confirm if the composite value is less than value on Table 2.


(When M1 and M3 are generated simultaneously)

(Tendency of SRG inertia force)

Fig. 3 Tendency of inertia force coefficient of SRG3

Technical data

SCP*2

CMK2

CMA2

SCM

SCG

SCA2

SCS

CKV2

CA/OV2

SSD

CAT

MDC2

MVC

SMD2

MSD³ FC*

STK

ULK'

JSG

JSC3

USSD

USC

JSB3

LMB

STG

STS L

LCS

LCG

LCM

LCT

LCY

STR2 UCA2

HCM

HCA

SRL3 SRG3

SRM3

SRT3 MRL2

MRG2

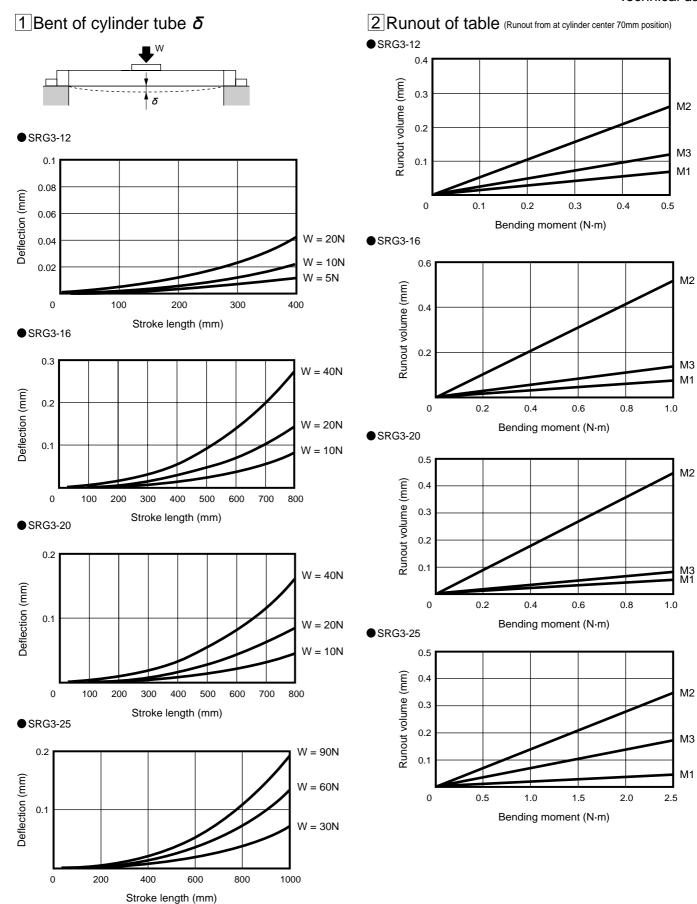
SM-25

CAC4

UCAC2

RCC2

MFC


SHC

GLC

Ending

Rodless type High precision guided rodless cylinder

JSK/M2

21

CKD

SCP*2 CMK2

CMA2

SCM

SCG

SCA2

SCS

CKV2

CA/OV2 SSD

CAT

MDC2

MVC

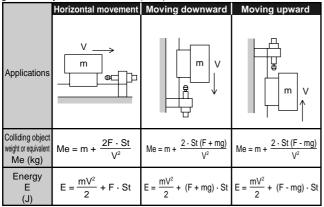
SMD2

MSD*

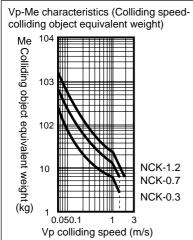
FC*

STK

ULK*


JSK/M2

3 How to adjust adjustable full stroke unit


 Confirming allowable colliding energy of shock absorber Calculate the colliding object equivalent weight Me, and colliding energy E according to the formula on the table below, and confirm if Me and E should not be greater than the allowable values on Fig.
 Also, refer to Table 11 to check if specifications of repeat frequency and colliding speed etc, should be allowable values or less. Allowable value of colliding object equivalent weight Me and colliding energy E may vary depending on colliding speed.

Symbol

- E : Colliding energy (J)
- Me : Colliding object equivalent weight (kg)
- m : Weight of workpiece (kg)
- F : Cylinder thrust (N)
- V : Colliding speed (m/s) St : Stroke of shock abso
- St : Stroke of shock absorber (m) g : Gravity acceleration 9.8 (m/s²)

Fig.4 Colliding object equivalent weight

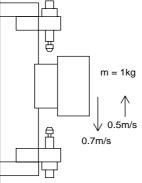
Series

Fechnical data

(2) Shock absorber

Table 6 Specifications

					(
Туре		SRG3-12/16	SRG3-20	SRG3-25				
Shock absorber r	nodel no.	NCK-00-0.3-C	NCK-00-0.7-C	NCK-00-1.2	E			
Descriptions		NCK-00-0.3-C	NCK-00-0.7-C	NCK-00-1.2				
Type/category			Without adjuster spring return type					
Maximum energy a	absorption	J 3	7	12	0			
Stroke length	mm	n 6	8	10				
Maximum energy absorption per hour kJ/		6,300	12,600	21,600	`			
Max. colliding spee	ed m/s	3	1.5					
Max. repeating cyc	cle Time/min	. 35		30	(
Ambient temperatu	ure °C		-10 to 80					
Required strength	of mounting bracket N	3,540	6,150	8,400	Ē			
Return time S		6	0.3 or less					
Product weight kg		0,012	0.02	0.04	1			
Recoiling force	Extended N	3.0	2.0	2.9	ſ			
Necoling IOICe	Compressed N	4.6	4.3	5.9				


(3) For example of calculation (SRG3-20)

Example of calculation (1) when lifting up/down Working conditions

Load M1 (kg)

Colliding speed 0.5 when lifting up (m/s)

0.7 when lifting down (m/s) Working pressure 0.5 (MPa) (157N)

(1) Kinetic energy of when lifting (E1)

$$E_1 = \frac{1 \times 0.5^2}{2} + (157 - 1 \times 9.8) \times 0.008$$

= 1.30 (J)

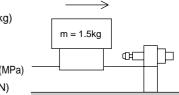
The value is less than half of max. energy absorption on Table 12. Kinetic energy (E1) can be absorbed.

$$Me = 1 + \frac{2 \times 0.008 (157 - 1 \times 9.8)}{0.52}$$

= 10.42 (kg)

Me of shock absorber for SRG3-20 is 18kg at V=0.5m/s according to Fig. 4, thus can be absorbed.

(2) Kinetic energy when lifting down (E1)


$$E_1 = \frac{1 \times 0.7^2}{2} + (157 + 1 \times 9.8) \times 0.008$$

= 1.58 (J)

The value is less than half of maximum energy absorption on Table 12. Kinetic energy (E1) can be absorbed.

$$Me = 1 + \frac{2 \times 0.008 (157 + 1 \times 9.8)}{0.7^2}$$
$$= 6.45 (kg)$$

Me of shock absorber used for SRG-20, as Fig 4. shows, is 16 kg when V=0.7m/s. The value can be absorbed.

• Example of calculation (2) horizontal v = 0.5m/s Working conditions \rightarrow Load weightM 1.5 (kg) Colliding speed m = 1.5kg Horizontal 0.5 (m/s) Æ Working pressure 0.3 (MPa) (94N)

Kinetic energy of horizontal (E1)

$$E_1 = \frac{1.5 \times 0.5^2}{2} + 94 \times 0.08$$
$$= 0.94 \text{ (J)}$$

The value is less than half of max. energy absorption on Table 12. Kinetic energy (E1) can be absorbed.

$$Me = 1.5 + \frac{2 \times 94 \times 0.008}{0.52}$$
$$= 1.53 \text{ (kg)}$$

Fig. 4 shows, Me value of shock absorber for SRG-20 as 18 kg when V = 0.5 (m/s). Since 1.53 < 18, this can be absorbed.

(Note) Refer to "9 Confirming inertia load" at Step-9 for inertia load. The value should not exceed allowable value.